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Conversion Factors 

1 kilogram (kg) 1000 grams (g) 

1 kilogram (kg) 2.20462 pounds (lbs) 

1000 kilograms (kg) 1 metric ton (MT) 

1 metric ton (MT) 1.10231 short tons (ton) 

1,000,000 metric tons (MT) 1 million metric ton (MMT) 

1 metric gigaton (GT) 1,000 million metric tons (MMT) 

1 hectare (ha) 2.47105 acres (ac) 

1 megajoule (MJ) 947.817 British thermal units (Btu) 

1,000,000 British thermal units (Btu) 1 million metric British thermal units (MMBtu) 

1 gallon of ethanol 76,330.0 British thermal units (Btu) of energy
1
 

  

                                                           
 

1
 Based on the lower heating value (LHV) of ethanol. 
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1. Introduction 
This chapter introduces the background for, the general approach for conducting the analyses described 

in, and the organization of this report. 

1.1. Background 

Between 2004 and 2014, U.S. ethanol production, virtually all from corn starch, increased from 3.4 to 

14.3 billion gallons per year. This increase in production was largely the result of two pieces of 

legislation that mandated the nation’s supply of transportation fuel contain specified quantities of 

renewable fuels (i.e. biofuels). Specifically, the Energy Policy Act of 2005 established the Renewable Fuel 

Standard (RFS), which included a schedule of required biofuel use that started at 4 billion gallons in 2006 

and rose to 7.5 billion gallons by 2012. Two years later, the Energy Independence and Security Act of 

2007 replaced the RFS with the Revised Renewable Fuel Standard (RFS2). The RFS2 included a new 

schedule of required biofuel use that began at 9 billion gallons in 2008 and ramped up to 36 billion 

gallons in 2022. Corn ethanol’s mandate started at 9 billion gallons in 2008, gradually increased to 15 

billion gallons in 2015, and was held constant at that level through 2022. 

With the exception of ethanol produced in certain grandfathered refineries, a biofuel must have a life-

cycle greenhouse gas (GHG) profile at least 20 percent lower than that of the fossil fuel it replaces to 

qualify as a renewable fuel under the RFS2. Earlier studies by Searchinger et al. (2008) and Fargione et 

al. (2008) examined the effects of allocating billions of bushels of corn to ethanol production on supplies 

of corn and other commodities going to domestic and world food and feed markets.2 These studies 

proposed that domestic and world commodity prices would rise and farmers in the United States and 

other regions would respond by bringing new lands into production. Bringing new land into commodity 

production results typically in CO2 emissions and these emissions can be large if the former land use was 

native grassland, wetland, or forest. The domestic and international land effects described above are 

referred to as, respectively, “direct land-use change” and “indirect land-use change” (iLUC). GHG profiles 

of corn ethanol date back to the early 1990s, but those done prior to 2007 did not account for emissions 

related to iLUC. Searchinger et al. (2008) and Fargione et al. (2008) concluded that when emissions 

related to iLUC are accounted for, corn ethanol has a higher GHG profile than gasoline. More recently, 

researchers have reviewed the responses of farmers across the world to changes in corn demand. This 

study draws on these new findings, including Bruce Babcock and Zabid Iqbal’s publication “Using Recent 

Land Use Changes to Validate Land Use Change Models”. Babcock and Iqbal’s study confirmed that the 

primary land-use change response by the world’s farmers during the period 2004–2012 was to use 

                                                           
 

2
 The cap also reflected a practical constraint. For a various reasons, the ethanol content of gasoline sold in the Unites States for 
use in light trucks and automobiles is limited to 10 percent (a product called E10). This constraint is referred to as the “blend 
wall.” The blend wall presents a challenge to expanding ethanol consumption because virtually all gasoline now sold in the 
United States is E10. In 2015, for example, the United States consumed about 140.4 billion gallons of gasoline 
(https://www.eia.gov/tools/faqs/faq.cfm?id=23&t=10). The blend wall thus limited domestic consumption of ethanol in 
transportation fuel to a little over 14 billion gallons. 

https://www.eia.gov/tools/faqs/faq.cfm?id=23&t=10
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available land resources more efficiently rather than expanding land brought into production (Babcock 

and Iqbal, 2014). Farmers in Brazil, India, and China have increased double cropping, reduced 

unharvested planted area, reduced fallow land, and reduced temporary pasture in order to expand 

production. 

The RFS2 directed the U.S. Environmental Protection Agency (EPA) to do a full life-cycle analysis (LCA) of 

greenhouse gas (GHG) emissions associated with the production of corn ethanol (as well as other 

biofuels) and explicitly specified that emissions related to iLUC be included. In 2010, EPA released this 

LCA as part of its Regulatory Impact Analysis (RIA) of the RFS2. The EPA RIA developed projections 

through 2022 of the GHG emissions associated with 11 specific emission categories that, conceptually, 

capture the full range of direct and indirect GHG emissions associated with corn-ethanol production and 

combustion (i.e., from corn field to tailpipe). These emission categories include: 

1. Domestic farm inputs and fertilizer N2O 

2. Domestic land-use change 

3. Domestic rice methane3 

4. Domestic livestock4 

5. International land-use change 

6. International farm inputs and fertilizer N2O 

7. International rice methane 

8. International livestock 

9. Fuel and feedstock transport 

10. Fuel production 

11. Tailpipe 

Figure 1-1 presents these emission categories and the data sources and models that EPA used to 

estimate their GHG emissions. EPA evaluated the emissions and energy use associated with each 

emission category and the upstream components. 

                                                           
 

3
 Domestic rice methane is included to account for changes in land-use emissions based on the increased demand for biofuels 
and change in domestic rice acreage. 

4
 Domestic livestock is included to account for the change in livestock production as costs for feed changes due to corn ethanol 

production. 
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Source: EPA, 2010a. 

Figure 1-1: Summary of Data Sources and Models Used in the Development of the Eleven Emission Sources 
(Source: Figure 2.2-1 from EPA RIA) 

Based on the EPA RIA, EPA concluded that in 2022, the GHG emissions associated with production of a 

unit of corn-based ethanol from a state-of-the-art natural gas powered refinery would be about 21 

percent lower than the emissions from an energy equivalent quantity of an “average” gasoline in 2005.5 

Figure 1-2 shows the EPA RIA emissions profiles for corn ethanol and the average gallon of gasoline. 

                                                           
 

5 The “average” gasoline was constructed as a weighted blend of different gasolines that were consumed in the 
United States in 2005. 
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 Source: EPA, 2010a. 

Figure 1-2: Summary of LCA emission Factors Showing the Relative Contributions Across the 11 Emission 
Categories (Source: Figure 2.6-2 from EPA RIA) 

Figure 1-2 shows that for corn ethanol—dry mill-natural gas plants—the largest sources of emissions 

were international land-use change, fuel production, and domestic farm inputs and fertilizer N2O. The 

figure shows the 95 percent confidence interval from the study’s uncertainty assessment for the corn 

ethanol scenario. The largest source of emissions within international land-use change are the 

conversion of land from pasture to cropland and the land-use change that were projected to occur in 

Brazil’s Amazon region. These international land-use change contributions are important areas of focus 

for the updates conducted as part of this study. However, as discussed later other non-land use 

contributions are also important. 

The EPA RIA is one of the most comprehensive modeling frameworks yet developed for projecting how 

the GHG profile of corn-based ethanol might change in response to anticipated changes in market 

conditions and/or renewable energy policies. Much of the EPA RIA analysis still reflects our best 

understanding of the relationships between some emission categories, the key emissions drivers within 

them, and corn ethanol’s GHG profile. At the same time, a large body of new information has become 

available since 2010—including new data, scientific studies, industry trends, technical reports, and 
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updated emissions coefficients—that indicates that for many of the emission categories in the EPA RIA, 

the actual emissions pathways that have developed since 2010 differ significantly from those projected 

in the EPA RIA. The primary purpose of this report is to consider a more complete set of information 

now available related to the life-cycle emissions for corn-based ethanol and based on this information, 

assess its current (i.e., in 2014) GHG emissions profile. 

This report also develops two projected emissions profiles for corn ethanol in 2022 (the last year of the 

RFS2). Starting with the current emissions profile, the first projection, labeled the business-as-usual 

(BAU) scenario, assumes that recent trends observed in corn inputs and per-acre yields, refinery 

technologies, vehicle fleets, and other factors continue through 2022. The continuation of these trends 

has implications for the path that GHG emissions attributable to corn ethanol production will follow 

over the next few years. The second projection, labeled the Building-Blocks scenario, adds to the BAU 

the assumption that refineries adopt a set of currently available GHG reducing technologies and 

practices in corn production, transportation, and co-products. The Building-Blocks scenario can be 

viewed as a best-case assessment of corn ethanol’s potential to mitigate GHG emissions given currently 

available technologies and production practices. 

1.2. General Approach 

Since 2010, the EPA RIA’s estimated GHG mitigation value for corn ethanol, 21 percent lower emissions 

than an energy equivalent quantity of gasoline, has dominated academic, industry, and policy 

discussions of GHG issues related to renewable transportation fuels, as well as the design of federal 

renewable fuels policy (specifically, the RFS2). For these reasons, the structure the LCA developed in this 

report is designed so that comparisons of its results with those in the EPA RIA are relatively 

straightforward. For example, to match boundary conditions and emissions coverage, this study employs 

the same 11 emission categories that make up the EPA RIA. Due to the EPA RIA’s comprehensive 

coverage of GHG emissions, both in aggregate and within each category, it is generally straightforward 

to assess where new information indicates that current emissions differ from the paths projected in 

2010, as well as what the magnitudes and directions of the differences are. 

Another structural similarity that facilitates comparisons between the LCA developed here and that in 

the RIA is a focus on the increase in corn ethanol production attributable to the RFS2 in assessing corn 

ethanol’s GHG profile. This results in an emphasis on the relationships that currently exist between the 

11 emission categories, the key GHG drivers within them, and ethanol’s GHG profile. Based on a 2007 

projection of ethanol production (i.e., before the RFS2) done by the Department of Energy’s Energy 

Information Agency (EIA) without an RFS in place and the 15 billion gallon cap on corn ethanol in the 

RFS2, EPA projected that the RFS2 would increase corn ethanol production by 3.03 billion gallons in 

2014 and 2.6 billion gallons in 2022 over the baseline EIA projection.6 We used the 3.03 billion gallon 

increase in ethanol production to assess the contribution of most of the emission categories in the 
                                                           
 

6
 In January of 2007, total ethanol production capacity in place and under construction was 11.6 billion gallons (RFA, 2007). 
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current GHG profile and the 2.6 billion gallon increase in the two projected profiles for 2022. The only 

exception was the land-use change emission categories. Modeling of indirect land-use change (where 

the United States land-use change results were used for the domestic land-use impact) in the RIA and 

the results utilized in this study are based on the changes in land use to successfully meet the 

requirements of the RFS (15 billion gallons) with 2004 as the baseline year (when ethanol production 

was 3.4 billion gallons). The emission impacts in these two categories are quantified based on an ethanol 

production increase of 11.59 billion gallons (i.e., 15 billion gallons minus 11.59 billion gallons). Table 1-1 

shows the values specific to the 2022 assumptions for corn ethanol. 

Table 1-1: Assumptions for Corn Ethanol Volumes by 2022 (Source: EPA RIA) 

Scenario 
2022 Assumption for Corn Ethanol 

(billion gallons) 

Fuel-Specific Scenarioa 12.397 

Control Scenariob 15.00 

Differencec 2.60 

Source: AEO 2007; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Inputs_Vol” tab. 
a
 The Fuel-Specific—or Reference Case—(both labels are used in the RIA and analysis spreadsheets to represent 

the baseline conditions for each emission category), represents the business-as-usual case, and is the projected 
volume of corn ethanol that is likely to have occurred without the enactment of the Energy Independence and 
Security Act (EISA) of 2007. The projected volumes are based on the Energy Information Administration’s (EIA’s) 
Annual Energy Outlook (AEO) 2007 reference case projections (U. S. Department of Energy, Energy Information 
Administration, 2007). AEO 2007 was chosen because, unlike later versions of EIA’s AEO, it did not include the 
impact of increased renewable fuel volumes under EISA and fuel economy improvements under the Corporate 
Average Fuel Economy (CAFE) standards as required in EISA. 
b
 The Control Scenario represents the projected corn ethanol volume that might be used to comply with the EISA 

volume mandate. The RIA notes that although actual volumes and feedstocks will likely be different, EPA believes 
that the projections made are within the range of expected outcomes when the standards are met, and allow for 
an assessment of the potential impacts of the RFS2 rule. 
c
 The Difference represents the volume difference between the business-as-usual projections and the anticipated 

volumes to comply with EISA. 
 

While the analysis developed in this report draws extensively from the EPA RIA from 2010, it does not 

replicate the methodology developed by EPA at that time to evaluate lifecycle GHG emissions associated 

with corn ethanol for implementation of the Renewable Fuels Standard. As such, the results presented 

in this report are not directly comparable to the results included in EPA’s RIA, nor does it alter the 

implementation of the RFS program. Here, ICF has considered the EPA RIA, observed industry trends 

since the implementation of the Renewable Fuels Standard, new research on lifecycle assessments, new 

data and other information that has become available since 2010—to reflect what has occurred (see 

Chapter 2). 
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 Note that this value is 12.29 in the report but 12.39 in the supporting spreadsheet calculations. 
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New information accounted for in this assessment includes new values that have been developed since 

2010 for many of the GHG emissions coefficients and conversion factors used in the RIA. These 

coefficients and factors are used to assign GHG emissions values to specific changes in economic 

activity, input use, land management practices, and output levels. In general, updated values for specific 

emissions coefficients and factors are discussed in the sections where they are applicable. One set of 

updated conversion factors, however, applies across emission categories and is discussed below. 

Since 1990, researchers and policy analysts have generally converted emissions of all GHGs to equivalent 

units of carbon dioxide (CO2) using the Global Warming Potentials (GWPs) endorsed at the time by the 

United Nations Framework Convention on Climate Change (UNFCCC). These GWPs are reported by the 

Intergovernmental Panel on Climate Change (IPCC) and are updated in each IPCC Assessment Report 

(AR). In 2010, the UNFCCC required Parties to use the GWPs from the IPCC’s Second Assessment Report 

(SAR); today, the UNFCCC requires Parties to use the GWPs contained in the Fourth Assessment Report 

(AR4). 8 Both sets of GWPs are shown in Table 1-2. Simply due to the changes in the GWPs shown in 

Table 1-2, emissions of methane (CH4) will receive more weight in this report than in the EPA RIA and 

emissions of N2O will receive less. 

Table 1-2: Global Warming Potentials 

Greenhouse Gas Second Assessment Report GWP Fourth Assessment Report GWP 

CO2 1 1 

CH4 21 25 

N2O 310 298 

 

Finally, throughout this report a large number of metrics are used to quantify the emissions associated 

with different activity levels, production processes, use of inputs, and outputs levels. Within a given 

source category, the set of metric(s) presented generally reflect those commonly used in the related 

literature. For example, emissions related to the use of nitrogen and other chemicals in corn production 

are summarized in kilograms (kg) CO2e/acre, kg CO2e/bushel, and kg CO2e per gallon of ethanol (see 

Table 3-7). For purposes of adding emissions across source categories in this analysis, and for facilitating 

comparisons with various emissions levels reported in the RIA, emissions for all source categories are 

also presented in grams CO2e/million Btu (g CO2e/MMBtu). 

1.3. Organization of the Report 

In the report that follows, Chapter 2 reviews the scientific papers, technical reports, data sets, and other 

information that has become available since 2010 and relate to current emission levels in each emission 

category. 
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 The choice of GWPs is a methodological decision. For example, the IPCC currently mandates the use of AR4 GWPs for 

countries reporting their national GHG emissions to the United Nations Framework Convention on Climate Change (UNFCCC). 
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Chapter 3 develops current GHG emission values for each emission category included in the EPA RIA 

based on the literature review. Chapter 3 considers each emission category separately. For each 

emission category, the section includes a summary of the methods, data sources, and emissions 

projection developed in the EPA RIA, describes the methods ICF used to quantify the contribution to 

corn ethanol’s current GHG profile attributable to that category, and quantifies that contribution. 

Based on the current GHG emissions profile of corn ethanol developed in Chapter 3, Chapter 4 develops 

two projected profiles for corn ethanol in 2022. The first projection considers a continuation through 

2022 of observable trends in corn yields (per acre), process fuel switching toward natural gas, and fuel 

efficiency in trucking. The second projection adds a number of changes refineries could make in their 

value chain to further reduce the GHG intensity of corn ethanol. These changes include contracting with 

farmers to reduce tillage and manage nitrogen applications, switch to biomass as a process fuel, and 

locating confined livestock operations in close proximity to refineries. 
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2. Review of the Scientific Papers, Technical Reports, Data 
Sets, and Other Information that have Become Available Since 
2010 and Relate to Current Emissions Levels in Each Emissions 
Category 
This chapter reviews and synthesizes the scientific papers, technical reports, data sets, and other 

information in the peer-reviewed and credible non-peer-reviewed literature that have become available 

since 2010 and relate to current emissions levels in the 11 source categories included in EPA’s 

Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis (RIA). The review is organized by 

emission category with the exception of the domestic livestock with international livestock categories, 

which are dealt with in one section. For each emission category, a summary of the scientific papers, 

technical reports, data sets, and other information that has become available since 2010 is provided. 

Where applicable, information, data, and emission factors from the more recent literature is compared 

to corresponding information and data used in the RIA.9 In addition, key issues identified in the available 

literature are summarized. 

The remainder of this chapter is organized as follows: 

1. Domestic farm inputs and fertilizer N2O 

2. Domestic land-use change 

3. Domestic rice methane 

4. Domestic and international livestock 

5. International land-use change 

6. International farm inputs and fertilizer N2O 

7. International rice methane 

8. Fuel and feedstock transport 

9. Fuel production 

10. Tailpipe 

2.1. Domestic Farm Inputs and Fertilizer N2O 

The domestic farm inputs evaluated in the RIA include fertilizers, herbicides, pesticides, and on-site fuel 

use. The fertilizers evaluated included nitrogen, phosphorous, potash, and lime. Representative 

herbicides and pesticides were also included. On-site fuels included diesel, gasoline, natural gas, and 

electricity. N2O emissions due to application of synthetic fertilizers were also quantified. 

                                                           
 

9
 Many of the inputs for the existing EPA emission estimates come from established data sources (e.g., the emission factors 
included in GREET) and other model outputs (e.g., FASOM, FAPRI, MOVES). We reviewed updated output datasets including 
emission factors from more recent versions of these models. For example, Argonne National Laboratory’s GREET and Carbon 
Calculator for Land Use Change from Biofuels Production (CCLUB) models were updated in 2015, so ICF was able to readily 
compare any updated emission factors against those used for the RIA. 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 10 January 12, 2017 

The RIA uses estimates of domestic agricultural inputs for fertilizer, pesticides, and energy use from the 

Forestry and Agriculture Sector Optimization Model (FASOM) output. Since the release of the RFS2 RIA, 

additional empirical data are available to validate and/or update those inputs used in the analysis. For 

example, the U.S. Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS) 

reports much of these data under the Agricultural Chemical Use Program. 

2.1.1. Domestic Farm Chemical Use 

The NASS Agricultural Chemical Use Program is USDA’s official source of statistics about on-farm 

chemical use and pest management practices.10 Since 1990, NASS has surveyed U.S. farmers to collect 

information on the chemical ingredients they apply to agricultural commodities through fertilizers and 

pesticides. On a rotating basis, the program currently includes fruits; vegetables; major field crops such 

as cotton, corn, potatoes, soybeans, and wheat; and nursery and floriculture crops. 

Each survey focuses on the top-producing states that together account for the majority of U.S. acres or 

production of the surveyed commodity. Data are available at the state level for all surveyed states, as 

well as at a multi-state level including all surveyed states. Data items published include, but are not 

limited to: 

 Percentage acreage treated, number of applications, rates of application, and total amounts applied 

of the primary macronutrients nitrogen (N), phosphate (P2O5), and potash (K2O) as well as (since 

2005) the secondary macronutrient sulfur (S). Available annually for field crops. 

 Percentage acreage or production treated, number of applications, rates of application, and total 

amounts applied of the individual active ingredients composing all registered pesticides used. Active 

ingredients are classified as herbicides, fungicides, insecticides, or other (regulators, desiccants, 

etc.), according to the pesticide product classification. Rates and amounts applied are published in 

the acid or metallic equivalent, as applicable. Selected items available for all commodity programs. 

2.1.2. Domestic Farm Energy Use 

Periodically, USDA produces an updated inventory of GHG emissions and carbon storage for the 

agriculture and forestry sectors. These reports are consistent with the annual emissions reporting done 

by EPA, but provide an enhanced view of the data regionally and by land use. 

The report is prepared with contributions from the USDA Agricultural Research Service, USDA Forest 

Service, USDA Natural Resources Conservation Service, USDA Office of Energy Policy and New Uses, 

USDA Climate Change Program Office, U.S. Environmental Protection Agency (EPA), and researchers at 

Colorado State University. The estimates in the USDA GHG Inventory are consistent with those 

published by the EPA in the official Inventory of U.S. Greenhouse Gas Emissions and Sinks. The last USDA 

                                                           
 

10
 More information on the program, and access to the data Chemical Use data from the NASS Quick Stats database is available 
online at: http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/ 

http://www.nass.usda.gov/Quick_Stats/
http://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/
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GHG inventory was published in September 2016. Chapter 5 of the USDA Agriculture and Forestry 

Greenhouse Gas Inventory: 1990–2013 provides information on energy use in agriculture (USDA, 2016a). 

Empirical data with which to validate and/or update those inputs used (and emissions estimated) in the 

RFS2 RIA analysis is available from the underlying data source (and emission factors) used in the 

inventory. 

Estimates of CO2 from agricultural operations are based on energy expense data from 

the Agricultural Resource Management Survey (ARMS) conducted by the National 

Agricultural Statistics Service (NASS) of the USDA. The ARMS collects information on 

farm production expenditures, including expenditures on diesel fuel, gasoline, LP gas, 

natural gas, and electricity... NASS also collects data on price per gallon paid by farmers 

for gasoline, diesel, and LP gas... Energy expenditures are divided by fuel prices to 

approximate gallons of fuel consumed by farmers. Gallons of gasoline, diesel, and LP gas 

are then converted to Btu based on the heating value of each of the fuels. The individual 

farm data are aggregated by state, and the state data are divided into 10 production 

regions, allowing fuel consumption to be estimated at the national and regional levels. 

Farm consumption estimates for electricity and natural gas are also approximated by 

dividing prices into expenditures. Since electricity and natural gas prices are not collected 

by NASS, we use data from the Energy Information Administration (EIA) that reports 

average prices by state… NASS regional prices were derived by aggregating the EIA state 

data into NASS production regions. (USDA, 2011) 

2.1.3. Domestic Farm Nitrogen Application 

As indicated in the recent literature (see Table 2-1), N application has increased from 137 to 143 pounds 

per acre from 2005 to 2010. However, yield per acre has increased during the same period, thereby 

resulting in a net decrease in N application per crop yield. In particular, as The Fertilizer Institute states: 

Between 1980 and 2014, U.S. farmers more than doubled corn production using only 

slightly more fertilizer nutrients than were used in 1980. This analysis is based on 

fertilizer application rate and corn production and acreage data reported by the U.S. 

Department of Agriculture’s (USDA) National Agricultural Statistics Service (NASS). 

Specifically, in 1980, farmers grew 6.64 billion bushels of corn using 3.2 pounds of 

nutrients (nitrogen, phosphorus and potassium) for each bushel and in 2014 they grew 

14.22 billion bushels using less than 1.6 pounds of nutrients per bushel produced. In 

total, this represents an 114 percent increase in production using only 4.5 percent more 

nutrients during that same timeframe. 

Between 2010 and 2014 there was a slight decrease in fertilizer per bushel (i.e., from 1.63 to 1.56 

pounds of N per bushel) (The Fertilizer Institute, 2016). This decrease in fertilizer application, combined 

with the direct change in acres, could reduce the impact of domestic nitrogen application. 
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Table 2-1: N Application for Corn 

All Farms: TOTAL Units 
2010 2005 

Estimate RSEa Estimate RSEa 
Planted acres 1,000 acres 81,740.030 0.0 76,121.603 0.0 

Manure applied percent of planted acres 15.026 9.0 12.875 7.0 

Ever treated with lime percent of planted acres 53.777 2.8 55.972 2.0 

Treated with chemical 
fertilizer and manure 

percent of planted acres 12.189 10.1 10.81 7.7 

Nitrogen inhibitor used percent of planted acres 12.457 10.3 8.493 13.9 

Soil tested for N, P2O5, K2O percent of planted acres 33.114 5.4 36.126 4.2 

Soil tested for N percent of planted acres 22.269 5.4 28.118 4.2 

Plant tissue test used percent of planted acres 4.495 19.5 4.157 22.3 

Acres treated with N percent of planted acres 96.394 1.0 96.588 0.9 

Acres treated with P2O5 percent of planted acres 78.194 2.2 81.652 1.5 

Acres treated with K2O percent of planted acres 61.187 2.8 65.388 2.2 

N applied pounds per treated acre 143.484 1.3 137.027 1.6 

P2O5 applied pounds per treated acre 60.959 2.5 57.627 2.7 

K2O applied pounds per treated acre 79.135 3.5 82.626 2.8 

Compost applied percent of planted acres 0.332 31.4 NA NA 
a
 The Relative Standard Error (RSE) is the standard error of the estimate expressed as a percent of the estimate 

NA—estimate does not comply with NASS disclosure practices, is not available, or is not applicable 
Source: USDA ERS, 2013a. 

 

2.1.4. Domestic Farm Inputs and Fertilizer N2O Emission Factors 

The RIA used Argonne National Laboratory’s GREET_1.8c, released in 2009, to create emission factors 

for herbicides, pesticides, and nitrogen, phosphate, potash, and lime fertilizers. The GREET emission 

factors were documented in two locations within the docket. Based on the file, “Renewable Fuel 

Lifecycle Greenhouse Gas Calculations (2).xls” (Docket ID: EPA-HQ-OAR-2005-0161-0950) (EPA, 2009a) 

the emission factors are presented below in Table 2-2. 

Table 2-2: RIA Emission Factors for Domestic Farm Inputs and Fertilizer (Units: Emissions—grams per ton of 
nutrient; Energy Use—MMBtu per ton of nutrient) 

 

Average 
Nitrogen 
Fertilizer 

Phosphate 
(P2O5) 

Fertilizer 

Potash (K2O) 
Fertilizer 

Lime 
(CaCO3) 

Fertilizer 
Herbicide Pesticide 

CO 2,726 1,091 214 244 6,582 10,091 

NOx 2,274 6,206 1,103 781 23,188 29,312 

PM10 436.1 1,468 137 544 11,269 12,874 

PM2.5 230.1 901.2 57.1 181.8 5,145 6,113 

SOx 1,007 54,455 423.17 904 21,979 17,007 

CH4 2,632 1,610 888 830 27,147 32,196 

N2O 1,481 16.68 9.12 7.762 216.3 281.7 
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Average 
Nitrogen 
Fertilizer 

Phosphate 
(P2O5) 

Fertilizer 

Potash (K2O) 
Fertilizer 

Lime 
(CaCO3) 

Fertilizer 
Herbicide Pesticide 

CO2 2,211,527 894,413 602,485 949,543 18,767,361 21,967,813 

Coal Energy 2.56 2.52 2.73 2.72 50.66 62.68 

Natural Gas Energy 36.92 5.54 2.14 2.11 63.76 76.01 

Petroleum Energy 1.67 3.49 2.23 1.63 114.89 134.39 

Source: EPA, 2009b. 

 

Based on the docket file, “GREET_Model_Spreadsheets_Used_in_the_Lifecycle_Analysis_(3).xls” (Docket 

ID: EPA-HQ-OAR-2005-0161-3176) (EPA, 2009a), the values were taken from GREET and multiplied by 

1.1. The RIA does not include any explanation for the multiplication.  One possible reasoning is that the 

1.1 multiplicative is to adjust the GREET lower heating value (LHV) to align with EIA’s higher heating 

value (HHV). Table 2-3 below shows the GREET data used in the RIA that includes the raw GREET 

emission factors multiplied by 1.1 found in the docket spreadsheet. 

Table 2-3: RIA Emission Factors for Domestic Farm Inputs and Fertilizer (Units: Emissions—grams per ton of 
nutrient; Energy Use—MMBtu per ton of nutrient) 

 

Average 
Nitrogen 
Fertilizer 

Phosphate 
(P2O5) 

Fertilizer 

Potash (K2O) 
Fertilizer 

Lime 
(CaCO3) 

Fertilizer 
Herbicide Pesticide 

CO 6,288 1,387 470 287 10,386 15,864 

NOx 3,733 7,895 2,007 915.23 36,489 45,885 

PM10 999 1,887 687 653 17,938 20,331 

PM2.5 518 1,158 242 218 8,203 9,683 

SOx 1,957 70,105 1,465 1,039 34,420 26,672 

CH4 3,175 1,942 1,060 989 32,856 38,665 

N2O 1,794 19.71 10.43 8.78 253 327 

CO2 2,668,549 1,076,267 717,035 653,152 22,681,896 26,303,347 

Coal Energy 2.81 2.77 2.98 2.97 55.64 68.30 

Natural Gas Energy 40.68 6.13 2.34 2.31 71.54 84.33 

Petroleum Energy 1.75 3.76 2.34 1.68 124.91 144.67 

Source: EPA, 2009a. 

 

Since the RIA was released, GREET has been updated nine times. Common updates include the addition 

of new pathways, updated natural gas and oil data, and updated electricity generation mix. During the 

GREET 2014 update, ethanol production from corn, soy, and cellulose were updated and expanded. The 

most recent release of GREET was October 2, 2015. Table 2-4 below shows the updated emission factors 

for herbicides, pesticides, and nitrogen, phosphate, potash, and lime fertilizers included in GREET 2015. 
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Table 2-4: Updated Emission Factors for Domestic Farm Inputs and Fertilizer (Units: Emissions—grams per 
ton of nutrient; Energy Use—MMBtu per ton of nutrient)  

 Average 
Nitrogen 
Fertilizer 

Phosphate 
(P2O5) 

Fertilizer 

Potash 
(K2O) 

Fertilizer 

Lime 
(CaCO3) 

Fertilizer 
Herbicide Pesticide 

CO 6,542 2,197 460 19 12,516 20,673 

NOx 7,203 5,357 1,835 36 43,230 61,765 

PM10 1,261 1,289 166 4 4,735 4,398 

PM2.5 1,028 1,006 124 2 2,941 3,331 

SOx 16,417 55,843 1,146 6 51,568 20,634 

CH4 8,675 2,670 882 12 25,016 29,773 

N2O 1,818 25 9 0 317 321 

CO2 2,765,389 1,261,876 557,061 11,763 17,504,257 20,189,207 

Coal Energy 2.08 2.35 2.11 0.01 39.10 47.76 

Natural Gas Energy 46.09 11.95 2.54 0.02 74.87 89.99 

Petroleum Energy 4.88 4.00 2.46 0.13 112.03 128.57 

Source: Argonne National Laboratory, 2015. 

 

With IPCC Fourth Assessment Report (AR4) Global Warming Potentials (GWPs) applied, a comparison of 

each set of emission factors (in g CO2e/ton of nutrient) are presented below in Figure 2-1. The updated 

2015 data shows an increase in the GHG impact of nitrogen and phosphate fertilizers but a decrease in 

the GHG impact of potash and lime fertilizers. 

 

Figure 2-1: Comparison of Emission Factors for Fertilizers 
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As the tables show, there are significant differences in emissions and energy use between GREET1_2009 

and GREET1_2015 for nitrogen fertilizer and lime. 

For nitrogen fertilizer, between 2009 and 2015, Argonne adjusted energy use for nitrogen fertilizer 

manufacturing by increasing natural gas use across all nitrogen fertilizer types. For lime, energy use and 

emissions are significantly reduced from GREET_2009 to GREET_2015. The changes result from 

Argonne’s correction of using crushed limestone in GREET_2015 from using lime in GREET_2009. 

2.1.5. Domestic Farm Input and Fertilizer N2O Management Practices 

While the RIA includes comprehensive information on emission factors, it does not include the recent 

literature discussing an increase in crop and nutrient management strategies. These strategies have the 

potential to reduce the emissions from agriculture production, which could have a noticeable impact on 

domestic farm input and fertilizer N2O emission calculations such as for the corn ethanol LCA. Two of the 

most common of these strategies are use of nitrification inhibitors and precision agriculture. USDA 

statistics already reflect the effects of precision agriculture through the reduced fertilizer use per bushel 

of corn harvest, however use of nitrification inhibitors is not reflected in estimation of N2O emissions. 

Nitrification inhibitors work by slowing the nitrification process when nitrogen-based fertilizer is applied 

to crops, which allows for an increase in nitrogen use efficiency. Inhibitors can be mixed into fertilizers 

or applied separately, and they give crops access to a larger percentage of applied fertilizer. This 

increased access to applied nitrogen improves the nitrogen use and reduces the nitrogen loss from 

crops, which decreases the resulting emissions from applied nitrogen-based fertilizers. More specifically, 

as Trenkel (2010) explains in his comprehensive paper on enhancing nutrient use efficiency in 

agriculture through slow- and controlled-release and stabilized fertilizers, the Association of American 

Plant Food Control Officials (AAPFCO) defines a nitrification inhibitor as “a substance that inhibits the 

biological oxidation of ammoniacal-N to nitrate-N” (Trenkel, 2010). Maintaining the nitrogen in its 

ammonium form longer gives crops a more prolonged chance for nitrogen-uptake, therefore using the 

applied nitrogen more effectively and reducing emissions through nitrogen loss. 

Precision agriculture refers to crop strategies that use field-specific data to optimize outputs. As 

Schimmelpfennig and Ebel (2011) describe in their paper on the recent adoption of precision agriculture, 

the term precision agriculture is used to designate crop practices that use “information gathered during 

field operations, from planting to harvest, to calibrate the application of inputs and economize on fuel 

use.” These practices include GPS- and sensor-based mapping systems that regulate the application rate 

of inputs such as fertilizers and eliminate the potential for overlapping application on corners and 

irregular fields. Systems that regulate and optimize the application rate are typically called variable rate 

technology (VRT) or variable rate application (VRA), while systems that reduce or eliminate overlap in 

application are typically called swath control. 

Studies released since the implementation of RFS2 show that use of inhibitors on crops can reduce 

emissions around 20 to 60 percent, depending on factors such as timing of application and soil moisture 

(Halvorson, 2014; Thapa et al., 2015). In a slightly more modest range, recent literature indicates that 
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variable rate technology can decrease emissions in the range of 19 to 35 percent (Vazquez-Amabile et 

al., 2013). Although there is no individual agreed-upon emissions reductions rate across the literature, 

there is a consensus in the literature that these practices can reduce overall emissions in tangible ways, 

such as by improving the efficiency of nitrogen use, reducing the use of inputs such as nitrogen-based 

fertilizer, and decreasing on-farm fuel use. 

Schimmelpfennig and Ebel (2011) describe an upward trend in use of precision agriculture, using data 

from the Agricultural Resource Management Survey (ARMS) of the USDA Economic Research Service 

(USDA ERS, 2013b). According to the USDA ARMS data, use of many nitrogen management strategies did 

increase from 2005 to 2010. As the RIA does not include up-to-date data from 2010, it would not have 

included changes in emissions data caused by these increasingly common practices. 

Figure 2-2 shows the changing prevalence of corn acres treated with nitrogen (N) and the use of: (1) 

nitrogen inhibitors, (2) precision agriculture, (3) variable rate technology for any fertilizing, (4) variable 

rate technology (VRT) for nitrogen application specifically, and (5) guidance or AutoSteering systems (i.e. 

swath control). All of the nutrient management practices increased in use between 2005 and 2010, 

while the total number of corn acres treated with nitrogen declined only slightly. The average 

application rate of nitrogen did increase between 2005 and 2010, from 137 to 143 pounds per treated 

corn acre. 

 

Figure 2-2: Changes in Corn Production Practices from 2005 to 2010 
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These practices are clearly increasing in use domestically, and given their positive reviews in the recent 

literature, they are likely to continue to increase. Practices such as use of nitrification inhibitors and 

precision agriculture could decrease both upstream and downstream emissions from agriculture and will 

play an important mitigation role in the sector. ICF recognizes that more recent data may be available 

including a report by the University of Nebraska (Castle et al. 2015). 
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2.2. Domestic Land-Use Change 

USDA feed grains database provides useful information to determine actual land use for corn ethanol 

production. The database provides United States commodity market year annual information for: 

 Corn Production 

 Planted Acreage 

 Corn Harvested Acreage 

 Corn use in alcohol for fuel use 

Current available information covers market years 1980 to 2015. Marketing years (MYs) span calendar 

years and often overlap both calendar years. For example, marketing year 2012 is interpreted as 

2012/2013 and refers to the marketing year beginning September 1, 2012 and ending August 31, 2013. 

Annual values for the two most recent years (i.e., 2014 and 2015) are preliminary and/or forecasts 

(USDA ERS, 2015a). 

The USDA National Agricultural Statistics Service corn production forecast has two components—acres 

to be harvested and expected yield per acre. 

Every year a single survey is performed in June. The producers are asked to report the 

acreage, by crop, that has either being planted or that they intend to plant, and the 

acreage they expect to harvest as grain. Data from this survey are used to estimate, 

among other things, total acres planted to corn…regardless of the intended uses. 

Preliminary projections of acres to be harvested for grain are also made using these 

data. (USDA NASS, 1999) 

This information allows for the determination of historical average national corn yield, percentage of 

U.S. corn production allocated to ethanol, and differences between corn planted acreage and corn 

harvested acreage. Table 2-5 summarizes the data. 
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Table 2-5: U.S. Corn Crop Actual Performance 

Year 

USDA National Agricultural Statistics Service Data ICF Analysis 

Corn Use in 
Fuel Ethanol 

U.S. Corn 
Production 

Corn Planted 
Acreage 

Corn 
Harvested 
Acreage 

Corn 
Allocation to 

Ethanol 

Average 
Crop 
Yield 

Harvested/ 
Planted 
Acreage 

Million 
bushels 

Million 
bushels 

Million acres Million acres % 
bushels/ 

acre 
% 

2007 3,049.21 13,037.88 93.53 86.52 23% 150.7 93% 

2008 3,708.89 12,043.20 85.98 78.57 31% 153.3 91% 

2009 4,591.16 13,067.16 86.38 79.49 35% 164.4 92% 

2010 5,018.74 12,425.33 88.19 81.45 40% 152.6 92% 

2011 5,000.03 12,313.96 91.94 83.88 41% 146.8 91% 

2012 4,641.13 10,755.11 97.29 87.37 43% 123.1 90% 

2013 5,123.69 13,828.96 95.37 87.45 37% 158.1 92% 

2014 5,208.50 14,215.53 90.60 83.14 37% 171.0 92% 

2015 5,200.00 13,653.51 88.38 80.66 38% 169.3 91% 

 

Total U.S. corn harvested acreage exceeds the assumed acreage modelled in the Regulatory Impact 

Assessment (RIA) performed for RFS2 (EPA, 2010a). The RIA Base Yield Case assumes that in 2017 corn 

harvested acreage would be 78.72 million acres in the reference case and 83.59 million acres in the 

control (regulatory effects) case. The area was assumed to decrease later on in 2022 to 77.90 million 

acres in the reference case and 81.46 million acres in the control case (EPA, 2010b). USDA data shows 

that corn harvested acreage peaked in 2012 at a value of 87.37 million acres. Similarly, planted acreage 

peaked at 97.29 million acres. However, in 2012 production decreased considerably as crop yields 

decreased significantly (123.1 bu/acre) due to the exceptional drought that affected the Midwest and 

Great Plains. The USDA 2014 preliminary and 2015 forecasted figures indicate that since 2012, corn 

yields are expected to increase leading to a corn harvested acreage in 2015 (80.66 million of acres) that 

is below the RIA control case assumed for corn harvested acreage for 2017 and 2022 (i.e., 83.59 and 

81.46 million acres, respectively). USDA long-term projections (USDA ERS, 2015a) (see Table 2-6) 

indicate that total U.S. harvested area will remain below RFS2 RIA assumed values for 2017, but exceed 

the RFS2 RIA assumed 2022 corn harvested area by over 0.5 million acres. Figure 2-3 shows U.S. Food 

and Agricultural Policy Research Institute (FAPRI) modelled values as opposed to FASOM values. The 

figure illustrates the trend expected in the RFS2 RIA compared to the actual and updated forecast of the 

performance of U.S corn crops. 
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Table 2-6: USDA Corn Crop Long Term Projections 

Year 

USDA National Agricultural Statistics Service Data ICF Analysis 

Corn Use in 
Fuel Ethanol 

U.S. Corn 
Production 

Corn Planted 
Acreage 

Corn 
Harvested 
Acreage 

Corn 
Allocation to 

Ethanol 

Average 
Crop 
Yield 

Harvested/ 
Planted 
Acreage 

Million 
bushels 

Million 
bushels 

Million acres Million acres % 
bushels/ 

acre 
% 

2016 5,150.00 13,940.00 90.00 82.40 37% 169.2 92% 

2017 5,100.00 14,105.00 90.00 82.40 36% 171.2 92% 

2018 5,075.00 14,270.00 90.00 82.40 36% 173.2 92% 

2019 5,075.00 14,355.00 89.50 81.90 35% 175.3 92% 

2020 5,075.00 14,520.00 89.50 81.90 35% 177.3 92% 

2021 5,100.00 14,595.00 89.00 81.40 35% 179.3 91% 

2022 5,125.00 14,760.00 89.00 81.40 35% 181.3 91% 

 

 

Figure 2-3: Comparison of Modelled Trend of U.S. Corn Harvested acreage to Actual and Recent Forecast 
(Sources: EPA (2010c), USDA ERS (2015b), and USDA (2015a)) 

USDA commodity market year annual information indicates that a high percentage of corn production 

has been allocated to ethanol during 2010 to 2012 (e.g., 43 percent in 2012 compared with the RIA 

assumed 41 percent in 2022). A potential reason for the high allocation value in those years is the low 

crop yields and an initial over production of corn fuel ethanol compared to the assumed values in the 

control case of the RIA. In the coming years, corn allocation to supply RFS2 fuel ethanol needs would 

potentially increase if low crop yields occur. In order to analyze this effect we compared the key 
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agricultural sectors (Table 2-7) with actual U.S. corn ethanol production data (Table 2-8) and USDA 

actual and forecasted corn production data (Table 2-5 and Table 2-6). 

Table 2-7 shows some discrepancies and/or non-harmonization among the production forecast 

parameters assumed for the RIA among sources. For the purposes of our analysis, FASOM results for 

2022 are evaluated. 

Table 2-7: RFS2 RIA Corn Ethanol Production Forecast Parameters for Control Base Yield Case as 
Documented by Several Sources 

Data Source 

Fuel Volume/Year 
(Billion Gallons/Year) 

15 billion gallons in 2017 15 billion gallons in 2022 

RFS2 
RIA

a 
FASOM 
Results

b
 

FASOM GHG 
Analysis

c
 

RFS2 RIA
a
 

FASOM 
Results

b
 

FASOM GHG 
Analysis

c
 

Harvested  
Acreage (million acres) 

n.a. 84 88 81 81 87 

Corn Production (million 
bushles) 

n.a. 14,586 14,117 --- 15,079 16,831 

Yield (bu/acre) 170 175 173
d
/183

e 
180 185 184

1
/194

2 

Corn Allocation to 
Ethanol 

n.a. n.a. n.a. 41% 37%
2
 n.a 

Ethanol Conversion  
(gallons/bushel) 

n.a. 2.69 
(2.71 dry 

mill & 2.50 
wet mill) 

2.69 2.85 
(2.85 dry 

mill & 2.63 
wet mill) 

2.69 
(2.71 dry 

mill & 2.50 
wet mill) 

2.69 

Notes: 
d
 Reported; 

e
 Estimated by ICF based on area, production, and conversion reported. 

Source: 
a
 EPA (2010a); 

b
 Beach and McCarl (2010); 

c
 EPA (2010d). 

 

The U.S. Energy Information Administration (EIA) published the trend on monthly total ethanol fuel 

production and consumption from 1981 to 2014 (EIA, 2015). Using this information, in terms of corn 

market years, the actual and most recent forecast for ethanol conversion can be estimated as illustrated 

in Table 2-8. 

Table 2-8: U.S. Ethanol Production and Ethanol Conversion 2007 to 2014 

Year 

National Agricultural Statistics Service and U.S. Energy Information 
Administration Data 

ICF Analysis 

Ethanol Production 
Calendar Year 

Corn Use in Fuel 
Ethanol 

Market Year 

Ethanol Production 
Market Year 

Ethanol Conversion 

Millions of Gallons Million bushels Millions of Gallons (gallons/bushel) 

2007 6,521 3,049.21  8,367 2.74 
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Year 

National Agricultural Statistics Service and U.S. Energy Information 
Administration Data 

ICF Analysis 

Ethanol Production 
Calendar Year 

Corn Use in Fuel 
Ethanol 

Market Year 

Ethanol Production 
Market Year 

Ethanol Conversion 

Millions of Gallons Million bushels Millions of Gallons (gallons/bushel) 

2008 9,309 3,708.89 10,305 2.78 

2009 10,938 4,591.16 12,670 2.76 

2010 13,298 5,018.74 13,811 2.75 

2011 13,929 5,000.03 13,765 2.75 

2012 13,218 4,641.13 12,822 2.76 

2013 13,293 5,123.69 14,103 2.75 

2014 14,313 5,208.50 14,660 2.81 

 

According to these data, since 2007 the average ethanol yield is 2.76 gallons/bushel. Moving forward a 

similar average yield could be expected. It means that the production of 15 billion gallons of corn 

ethanol would require around 5,435 million bushels of corn. The preliminary data for 2014 indicate that 

recently the yield could have improved for ethanol production (2.81 gallons/bushel or a 1.8 percent 

improvement over the average yield). These data indicate that actual national average ethanol 

conversion yield is slightly higher than the average national yield assumed in the FASOM model runs. 

FASOM assumes a potential contribution to ethanol production of dry mill versus wet mill ethanol 

facilities of 91 percent and 9 percent, respectively, with ethanol yields of 2.71 gallons/bushel and 

2.50 gallons/bushel for dry mill and well mill processes, respectively (Beach and McCarl, 2010). As a 

result, FASOM GHG emissions estimates uses a weighted ethanol conversion factor of 

2.69 gallons/bushel for the control case in both 2017 and 2022 (EPA, 2010d). Based on FASOM 

documentation, if the industry average conversion of 2.76 gallons/bushel is achieved in 2017 and 2022, 

it could be expected that the number of bushels (and domestic land-use all else equal) to be 2.5 percent 

lower compared to the estimated values in FASOM for the RIA analysis. 

Table 2-9 shows that U.S. corn ethanol production aligns with expected production under the RIA. In the 

last four years, an average annual 6 percent net overproduction occurred when compared to the control 

case due to major production volume in the early days (2010–2011) of the RFS2. 

On the other hand, assumed land-use impacts may be slightly affected by corn crop yield. USDA long-

term projections (Table 2-6) anticipate that corn yield will not reach the assumed crop yield in the Base 

Yield Scenario in 2017 (175 bu/acre) or in 2022 (185 bu/acre). The difference implies that under USDA 

crop yields, production of bushels per acre would be 2.2 percent lower potentially resulting in land use 

for corn ethanol in 2022 (all else equal) being 2.2 percent higher than estimated in the RFS2 RIA Base 

Yield Scenario. Improvement on ethanol conversion yields could be offset by reduction on crop yield. 
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Table 2-9: U.S. Ethanol Production and Ethanol Conversion 2007 to 2014 

Year 

EIA Ethanol Production 
Calendar Year 

Control Case 

Ethanol Production Deviation 

Billions of Gallons Billions of Gallons 

2010 13.30 11.24 15% 

2011 13.93 12.07 13% 

2012 13.22 12.83 3% 

2013 13.29 13.42 −1% 

2014 14.31 14.09 2% 

 

2.2.1. Emission Factors Comparison 

Straight comparison of land-use change (LUC) emission factors determined by Winrock, Woods Hole, 

and ARB LCFS AEZ models is limited. The factors are created under different set of parameters that may 

vary by the user and impact the final value of carbon estimated for a particular LUC. In order to compare 

the impacts that the use of different emissions factors would have on the GHG emissions estimates for 

the RFS2 RIA, the emission factors for each country/region have been documented in a consistent unit 

of measurement (i.e., Mg C/ha). 

Table 2-10 compares forest LUC emission factors and illustrates that results vary among 

countries/regions. For the most part, Woods Hole and ARB LCFS AEZ factors are higher than the Winrock 

factors, and, hence, their use would provide the highest emission estimates. Total impact depends on 

the LUC area estimated for each country/regions. In the case of domestic emissions, Winrock emission 

factors are an approximate middle point between the three different emission factor categories. In the 

case of international emissions using LUCs estimates by the Global Trade Analysis Project (GTAP) 

included in the FAPRI model, the highest GHG emissions estimates in forest LUC would result from the 

use of Woods Hole emission factors. Use of the Winrock and ARB LCFS AEZ model emission factors 

would provide 35 percent and 24 percent lower emission estimates, respectively. 

Table 2-10: Comparison of Winrock, Woods Hole, and ARB LCFS AEZ Model LUC Emission Factors for 
Forestry (Note: * indicates the highest emission factors among sources) 

Country/Region 
Winrock Woods Hole 

ARB LCFS AEZ model 
Country Weighted factor by 

FAPRI GTAP Area 

Mg C/ha Mg C/ha Mg C/ha 

United States 125 151.9* 112.50 

EU27 107 131.4* 101.41 

Brazil 131* 124.9 - 

Canada 77 108.2 123.80* 

Japan 92 188.2* 133.35 

CHIHKG 70 188.2* 154.03 

India 100 131.4 196.21* 
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Country/Region 
Winrock Woods Hole 

ARB LCFS AEZ model 
Country Weighted factor by 

FAPRI GTAP Area 

Mg C/ha Mg C/ha Mg C/ha 

C_C_Amer 111 131.4 - 

S_o_Amer 87 108.2 - 

E_Asia 67 188.2* 86.97 

Mala_Indo 219* 188.2 - 

R_SE_Asia 143 188.2 228.05* 

R_S_Asia 117* 114.9 204.31 

Russia 66 151.9* - 

Oth_CEE_CIS 110 151.9* 99.66 

R_Europe 85 99.7 107.24* 

MEAS_Nafr 95 85.4 112.49* 

S_S_Afr 74 108.2 219.70* 

Oceania 134 151.9 157.68* 

 

Table 2-11 compares grassland LUC emission factors. In a similar manner to the forestry emission 

factors, one methodology does not consistently overestimate or underestimate emission factors 

compared to the other alternatives. Deviations are specific to each country/region. However, in the case 

of domestic emissions due to grassland LUC, the Winrock emission factor provides the lower emission 

estimates per unit of area. In the case of international emissions using LUCs estimates by GTAP included 

in the FAPRI model, the highest GHG emissions estimates in grassland land-use change would result 

from the use of Woods Hole and ARB AEZ model emission factors. Winrock emission estimates would be 

79 percent lower than those obtained in the use of Woods Hole or ARB LCFS AEZ emission factors. 

Table 2-11: Comparison of Winrock, Woods Hole, and ARB LCFS AEZ Model LUC Emission Factors for 
Grasslands (Note: * indicates the highest emission factors among sources) 

Country/Region 
Winrock Woods Hole 

ARB LCFS AEZ model 
Country Weighted factor 

by FAPRI GTAP Area 

Mg C/ha Mg C/ha Mg C/ha 

United States 11 30.0* 26.79 

EU27 21 20.5 73.66* 

Brazil 31 46.5* 35.11 

Canada 16 28.5 33.44* 

Japan 21 54.3 87.25* 

CHIHKG 21 54.3* 29.77 

India 21 20.5 25.77* 

C_C_Amer 29 20.5 69.72* 

S_o_Amer 20 28.5 58.47* 

E_Asia 15 54.3* 25.93 

Mala_Indo 67* 54.3 42.26 

R_SE_Asia 28 54.3* 34.78 
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Country/Region 
Winrock Woods Hole 

ARB LCFS AEZ model 
Country Weighted factor 

by FAPRI GTAP Area 

Mg C/ha Mg C/ha Mg C/ha 

R_S_Asia 19 57.3* 22.03 

Russia 13 54.3* 35.12 

Oth_CEE_CIS 12 54.3* 31.41 

R_Europe 13 18.1 34.73* 

MEAS_Nafr 17 12.1 21.96* 

S_S_Afr 19 28.5 30.20* 

Oceania 16 54.3* 25.25 

 

Table 2-12 indicates that only Winrock provides a complete set of emission factors for all different 

countries/regions in the category of Cropland Pasture. Wood Hole does not provide emission factors 

under this category and ARB provides only two data points. 

Table 2-12: Comparison of Winrock, Wood Hole, and ARB LCFS AEZ Model LUC Emission Factors for 
Cropland Pasture 

Country/Region 
Winrock 

ARB LCFS AEZ model Country 
Weighted factor by FAPRI GTAP 

Area 

Mg C/ha Mg C/ha 

United States 38 14.69 

EU27 39   -    

Brazil 58 2.11 

Canada 32   -    

Japan 38   -    

CHIHKG 36   -    

India 41   -    

C_C_Amer 49   -    

S_o_Amer 36   -    

E_Asia 28   -    

Mala_Indo 105   -    

R_SE_Asia 58   -    

R_S_Asia 43   -    

Russia 26   -    

Oth_CEE_CIS 32   -    

R_Europe 26   -    

MEAS_Nafr 36   -    

S_S_Afr 33   -    

Oceania 45   -    

 

Notice that the variability in emission factors for a specific region highlights the significant impact that 

economic modeling has on LUC emission estimates. 
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Varying input parameter to the economic model can alter the magnitude and location of 

projected land conversion (Plevin et al., 2015). 

When using GTAP-BIO-ADV and AEZ-EF models, eleven parameters account for 80 percent of total 

variance on corn ethanol ILUC emission intensities (57 parameters contribute the remaining 20 percent); 

the crop yield elasticity with respect to price is by far the most important parameter 

contributing with nearly 50% in the variance of corn ethanol ILUC emission 

intensities…Overall, economic model parameters dominate in the top 5 parameters 

(contributing over 65% of total variance) and the top contributors of `3rd tier` 

importance came from the emission factor model (Plevin et al., 2015). 

The next sections detail LUC emission factors by source. 

2.2.2. Winrock Emission Factors 

For the RIA, Winrock International conducted an analysis of historical land-use trends using MODIS 

satellite imagery from 2001 and 2004. The analysis indicates which land-use types decreased or 

increased at the country level during this time period. Winrock calculated the GHG emissions resulting 

from this projected land-use change by compiling world wide data on carbon stock of different land 

types. Winrock emission factors account for changes in above and below-ground biomass carbon stocks, 

changes in soils carbon stocks, lost forest sequestration, land clearing with firing, and emissions from 

rice cultivation. Winrock followed Intergovernmental Panel on Climate Change (IPCC) (2006) guidelines 

when calculating the change in carbon stocks resulting from the projected land-use changes (ICF 

International, 2009). 

Table 2-13: Winrock LUC GHG Emission Factors for United States in Units of CO2e/hectare 

Conversion Conversion Conversion Reversion Reversion Reversion 

Forest Grassland Cropland Pasture Crop Crop Crop 

Crop Crop Crop Forest Grassland Cropland Pasture 

Mg CO2e/ha Mg CO2e/ha Mg CO2e/ha Mg CO2e/ha Mg CO2e/ha Mg CO2e/ha 

458 41 138 −237 −41 −138 

Source: Winrock emission factors as cited in Dunn et al., 2014, cells J79:O83 

 

Table 2-14: Winrock LUC GHG Emission Factors for United States in Units of C/hectare 

Conversion Conversion Conversion Reversion Reversion Reversion 

Forest Grassland Cropland Pasture Crop Crop Crop 

Crop Crop Crop Forest Grassland Cropland Pasture 

Mg C/ha Mg C/ha Mg C/ha Mg C/ha Mg C/ha Mg C/ha 

125 11 38 −65 −11 −38 

Source: Winrock emission factors as cited in Dunn et al., 2014, cells D79:I83 
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Table 2-15: Winrock LUC GHG Emission Factors—International 

Country/Region 

Conversion Conversion Conversion Reversion Reversion Reversion 

Forest Grassland Cropland Pasture Crop Crop Crop 

Crop Crop Crop Forest Grassland Cropland Pasture 

Mg C/ha Mg C/ha Mg C/ha Mg C/ha Mg C/ha Mg C/ha 

EU27 107 21 39 −29 −21 −39 

Brazil 131 31 58 −111 −30 −54 

Canada 77 16 32 −42 −16 −32 

Japan 92 21 38 −85 −21 −38 

CHIHKG 70 21 36 −72 −21 −36 

India 100 21 41 −73 −21 −39 

C_C_Amer 111 29 49 −94 −29 −47 

S_o_Amer 87 20 36 −72 −20 −35 

E_Asia 67 15 28 −59 −15 −27 

Mala_Indo 219 67 105 −165 −36 −71 

R_SE_Asia 143 28 58 −119 −28 −54 

R_S_Asia 117 19 43 −81 −19 −41 

Russia 66 13 26 −36 −13 −26 

Oth_CEE_CIS 110 12 32 −62 −12 −32 

R_Europe 85 13 26 −52 −13 −26 

MEAS_Nafr 95 17 36 −82 −17 −35 

S_S_Afr 74 19 33 −48 −18 −31 

Oceania 134 16 45 −80 −16 -45 

Source: Winrock emission factors as cited in Dunn et al., 2014, cells D90:I111 

Winrock provides 30-year emission factors that are developed for three different periods following the 

land transition. For international emission factors Dunn et al. (2014)11 summarize the method in the 

following equation: 

EF30 = EF1 + 19 × EF2–19 + 10 × EF20–80 

where EF30 = GHG emissions 30 years after the transition [Mg CO2e/ha]; EF1 = GHG emissions in the first 

year after the transition [Mg CO2e/ha]; EF2–19 = GHG emissions in years 2 through 19 after the transition 

[Mg CO2e/ha]; and EF20–80 = GHG emissions in years 20 through 80 after the transition [Mg CO2e/ha]. 

Complete details of the development of the Winrock emission factors are contained in Harris et al. 

(200912). 

 

                                                           
 

11
 Dunn JB, Qin Z, Mueller S, Kwon H, Wander M, Wang M (2014) Carbon Calculator for Land Use Change from Biofuels 
Production (CCLUB), Users' Manual and Technical Documentation (No. ANL/ESD/12-5 Rev. 2). Argonne National Laboratory 
(ANL). Available at: https://greet.es.anl.gov/publications. 

12
 Harris NL, Grimland S, Brown S (2009) Land use change and emission factors: Updates since proposed RFS rule. Report 
submitted to EPA, Available at Docket ID #EPA-HQ-OAR-2005- 0161-3163, www.regulations.gov 
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2.2.3. Woods Hole Emission Factors 

Woods Hole emission factors include C-Release Weighted values by Ecosystem for Above Ground, Below 

Ground, and Annual Growth components. The emission factors (see Table 2-16 and Table 2-17) result 

from several assumptions: 

 Above Ground emission factors are based on estimated areas for the six (6) different Ecosystem 

Subclasses, assumptions about the percentage of area in each ecosystem that is converted to 

biofuel feedstock production, an estimated carbon content in the vegetation for each Ecosystem 

Subclass, and the assumption that 75 percent of such carbon is released during conversion. 

 Below Ground emission factors are based on the percentage of area in each ecosystem that is 

converted to biofuel feedstock production, an estimated carbon content in soil for each Ecosystem 

Subclass, and the assumption that 25 percent of such carbon is release during conversion. 

 Annual Growth emission factors are based on the percentage of area in each ecosystem that is 

converted to biofuel feedstock production, and an estimated carbon sequestration value for each 

Ecosystem Subclass. Five (5) of the ecosystem subclasses would sequester carbon when mature. 

Computed final emission factor uses an assumption of 30 years for feedstock production (Foregone 

C-Sequestration Period). Similar to Winrock, these emission factors have been estimated using 

CCLUB to represent emission during a 30-year duration of biofuels production. 

Table 2-16: Woods Hole C-Release Weighted by Ecosystem for United States 

 
Non-Soil 

Above Ground Biomass 
Below Ground Biomass 

Annual 
Growth/Foregone 

Sequestration 
Emissions 

(Mg C/ha) (Mg C/ha) (Mg C/ha) (Mg C/ha) 

FORESTLAND 113.2 34.6 0.402 159.9 

CROPLAND 0.0 0.0 0.000 0 

GRASSLAND 10.0 20.0 0.000 30 

Source: Woods Hole as cited in Dunn et al., 2014, cells I72, I74, I76, M72, M74, M76, R72, R74, R76. 

 

Table 2-17: Woods Hole C-Release Weighted by Ecosystem in Forest Internationally 

Region 

Forest Forest Forest Forest 

Below Ground Non-Soil Annual Growth Emissions 

Mg C ha
−1

 Mg C ha
−1

 Mg C ha
−1

yr
−1

 Mg C ha
−1

 

EU27 32.3 82.0 1.3 151.9 

BRAZIL 23.8 102.2 0.2 131.4 

CAN 48.7 74.0 0.1 124.9 

JAPAN 23.4 74.8 0.3 108.2 

CHIHKG 23.7 138.6 0.9 188.2 
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Region 

Forest Forest Forest Forest 

Below Ground Non-Soil Annual Growth Emissions 

Mg C ha
−1

 Mg C ha
−1

 Mg C ha
−1

yr
−1

 Mg C ha
−1

 

INDIA 23.7 138.6 0.9 188.2 

C_C_Amer 23.8 102.2 0.2 131.4 

S_o_Amer 23.8 102.2 0.2 131.4 

E_Asia 23.4 74.8 0.3 108.2 

Mala_Indo 23.7 138.6 0.9 188.2 

R_SE_Asia 23.7 138.6 0.9 188.2 

R_S_Asia 23.7 138.6 0.9 188.2 

Russia 42.0 65.0 0.3 114.9 

Oth_CEE_CIS 32.3 82.0 1.3 151.9 

R_Europe 32.3 82.0 1.3 151.9 

MEAS_NAfr 22.2 54.9 0.8 99.7 

S_S_AFR 31.6 51.9 0.1 85.4 

Oceania 23.4 74.8 0.3 108.2 

 

Table 2-18: Woods Hole C-Release Weighted by Ecosystem in Grassland Conversion Internationally 

Region 

Grassland Grassland Grassland Grassland 

Below Ground Non-Soil  Annual Growth Emissions 

Mg C ha
−1

 Mg C ha
−1

 Mg C ha
−1

yr
−1

 Mg C ha
−1

 

EU27 47.3 7.0 0.00 54.3 

BRAZIL 13.8 6.7 0.00 20.5 

CAN 41.4 5.1 0.00 46.5 

JAPAN 10.5 18.0 0.00 28.5 

CHIHKG 47.3 7.0 0.00 54.3 

INDIA 47.3 7.0 0.00 54.3 

C_C_Amer 13.8 6.7 0.00 20.5 

S_o_Amer 13.8 6.7 0.00 20.5 

E_Asia 10.5 18.0 0.00 28.5 

Mala_Indo 47.3 7.0 0.00 54.3 

R_SE_Asia 47.3 7.0 0.00 54.3 

R_S_Asia 47.3 7.0 0.00 54.3 

Russia 47.3 10.0 0.00 57.3 

Oth_CEE_CIS 47.3 7.0 0.0 54.3 

R_Europe 47.3 7.0 0.00 54.3 

MEAS_NAfr 14.3 3.8 0.00 18.1 

S_S_AFR 7.5 4.6 0.00 12.1 

Oceania 10.5 18.0 0.00 28.5 
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Source: Woods Hole as cited in Dunn et al., 2014, cells B73:T93. 
Assumption: Input 6: Feedstock Production Years (Foregone C-Sequestration Period) = 30 years 
Production Years (Foregone C-Sequestration Period) = 30 years 

 

2.2.4. Air Resources Board Low-Carbon Fuel Standard Agro-Ecological Zone 
Model 

The Air Resources Board (ARB) Low-Carbon Fuel Standard (LCFS) Agro-Ecological Zone (AEZ) model 

provides U.S. and international LUC emission factors for the conversion of forestry, pasture, cropland 

pasture, and annuals. The model emission factors are disaggregated by world region and agro-ecological 

zones (AEZs). The model is consistent with the 19 regions and 18 zones reported by GTAP-BIO (GTAP 

biofuels) model. As a result, the model combines matrices of carbon fluxes (Mg CO2 ha−1yr−1) with 

matrices of changes in land use (ha) according to land-use category as projected by the GTAP-BIO 

model. The model also includes indexed carbon stock estimates (MgC ha−1) for biomass and soil carbon 

by the GTAP AEZ and region. The model uses assumptions about carbon loss from soils, biomass, mode 

of conversion, quantity and species of carbonaceous, and other GHG emissions resulting from 

conversion and carbon remaining in harvested wood products and char, and foregone sequestration 

(CARB, 2015). The full analytic time horizon used in AEZ-EF model is 30 years (Plevin et al, 201513). 

Table 2-19 shows the emission factors for Forest to Annuals, Pasture to Annuals, and CroplandPasture to 

Annuals that can be compared to the emission factors developed by Winrock or Woods Hole. In order to 

do a comparison, the emission factors that are provided by region and AEZ should be converted into 

equivalent emission factors by country/region. The country/region equivalent emission factors are 

weighted based on LUC area in each AEZ estimated by GTAP. Table 2-20 shows the equivalent emission 

factors. 

 

                                                           
 

13
 Plevin et al.,2015. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change. 
Environmental Science & Technology, 49(5). March 3, 2015. http://escholarship.org/uc/item/9wz1r8gf 
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Table 2-19: AEZ LUC Emission Factors Model v.52 (CO2e/ha) 
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Forestry-to-Annuals 

1 0 0 380 0 0 0 278 338 465 0 0 0 250 0 0 0 523 505 436 

2 0 0 403 0 0 0 503 734 551 0 0 0 0 0 0 0 495 505 459 

3 0 0 502 0 0 0 696 715 487 0 0 0 643 0 0 0 390 483 711 

4 0 524 637 0 0 141 778 1055 651 585 998 829 728 0 0 0 434 571 811 

5 0 0 853 0 0 719 830 1075 765 583 1010 848 837 0 0 0 0 796 863 

6 0 0 925 0 0 807 905 1013 915 603 1017 885 859 0 0 0 0 937 1076 

7 376 0 0 243 0 287 181 773 344 193 0 0 241 257 261 0 492 390 310 

8 411 262 0 361 0 292 325 799 349 218 0 0 416 314 352 0 449 384 454 

9 439 325 0 505 371 364 477 525 445 235 0 0 453 325 358 111 412 415 458 

10 441 372 564 466 501 519 507 732 556 330 0 584 576 384 369 398 434 382 486 

11 419 401 442 501 544 558 600 756 608 338 0 653 621 380 326 354 0 399 496 

12 398 399 636 0 395 571 670 860 714 341 0 677 657 206 397 0 0 491 586 

13 243 197 0 293 0 211 561 0 461 225 0 0 437 195 202 113 0 0 0 

14 255 212 0 369 0 202 434 0 578 227 0 0 457 198 193 181 0 0 0 

15 291 376 0 429 344 208 489 0 587 220 0 580 585 215 203 399 0 0 404 

16 395 281 0 567 0 226 584 0 755 0 0 709 663 243 233 375 0 0 516 

17 0 0 0 0 0 197 0 0 817 0 0 0 0 0 0 0 0 0 641 

18 0 0 0 0 0 0 0 0 722 0 0 0 0 0 0 0 0 0 0 

Pasture-to-Annuals 

1 0 0 78 0 0 0 49 72 83 0 0 0 62 0 0 0 69 59 67 

2 0 0 68 0 0 0 82 177 139 0 0 0 0 0 0 0 73 66 77 

3 0 0 92 0 0 0 88 174 105 0 0 0 89 0 0 0 84 90 90 

4 0 154 124 0 0 29 106 442 202 114 140 121 125 0 0 0 99 117 119 

5 0 0 123 0 0 202 132 313 224 108 140 126 139 0 0 0 0 186 85 
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6 0 0 125 0 0 134 135 253 394 84 160 150 130 0 0 0 0 125 191 

7 91 0 0 104 0 103 54 165 83 107 0 0 68 96 80 0 77 45 70 

8 99 110 0 119 0 93 86 192 99 117 0 0 71 128 94 0 79 47 78 

9 113 145 0 319 333 78 88 159 162 108 0 0 96 153 126 0 89 83 79 

10 123 272 143 196 329 101 126 553 129 112 0 102 113 249 239 168 104 99 109 

11 111 309 84 111 347 119 138 155 253 112 0 119 182 168 164 116 0 124 120 

12 103 291 161 0 347 131 124 463 215 82 0 119 197 124 162 0 0 225 193 

13 53 64 0 16 0 78 43 0 83 56 0 0 45 62 57 27 0 0 0 

14 65 69 0 65 0 77 63 0 78 74 0 0 46 68 61 46 0 0 0 

15 106 80 0 65 147 85 59 0 70 82 0 74 66 99 70 40 0 0 66 

16 204 262 0 94 0 112 82 0 78 0 0 106 77 106 94 225 0 0 86 

17 0 0 0 0 0 97 0 0 78 0 0 0 0 0 0 0 0 0 94 

18 0 0 0 0 0 0 0 0 55 0 0 0 0 0 0 0 0 0 0 

CroplandPasture-to-Annuals 

1 0 0 39 0 0 0 25 36 42 0 0 0 31 0 0 0 34 29 34 

2 0 0 34 0 0 0 41 89 70 0 0 0 0 0 0 0 36 33 38 

3 0 0 46 0 0 0 44 87 52 0 0 0 45 0 0 0 42 45 45 

4 0 77 62 0 0 15 53 221 101 57 70 61 63 0 0 0 49 59 60 

5 0 0 62 0 0 101 66 156 112 54 70 63 70 0 0 0 0 93 42 

6 0 0 63 0 0 67 68 126 197 42 80 75 65 0 0 0 0 63 96 

7 45 0 0 52 0 51 27 83 42 53 0 0 34 48 40 0 38 23 35 

8 50 55 0 60 0 47 43 96 49 58 0 0 35 64 47 0 40 24 39 

9 56 72 0 159 167 39 44 79 81 54 0 0 48 76 63 0 45 42 39 

10 62 136 72 98 164 51 63 277 65 56 0 51 56 124 119 84 52 50 54 

11 56 155 42 56 173 59 69 78 127 56 0 60 91 84 82 58 0 62 60 

12 52 145 80 0 173 66 62 232 108 41 0 60 98 62 81 0 0 112 96 
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13 27 32 0 8 0 39 22 0 42 28 0 0 23 31 28 13 0 0 0 

14 33 35 0 33 0 39 31 0 39 37 0 0 23 34 31 23 0 0 0 

15 53 40 0 33 74 42 30 0 35 41 0 37 33 49 35 20 0 0 33 

16 102 131 0 47 0 56 41 0 39 0 0 53 39 53 47 113 0 0 43 

17 0 0 0 0 0 48 0 0 39 0 0 0 0 0 0 0 0 0 47 

18 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0 0 0 0 

Source: Plevin, 2014. 

 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 34 January 12, 2017 

Table 2-20: AEZ Model v.52 LUC Emission Factors Weighted by AEZ LUC Estimated by GTAP 

AEZ Region 

Forestry-to-
Annuals 

Pasture-to-
Annuals 

CroplandPast
ure-to-
Annuals 

Forestry-to-
Annuals 

Pasture-to-
Annuals 

CroplandPast
ure-to-
Annuals 

Mg CO2e/ha Mg CO2e/ha Mg CO2e/ha Mg C/ ha Mg C/ ha Mg C/ ha 

United 
States 

412.52 98.24 53.86 112.50 26.79 14.69 

EU27 371.82 270.09 - 101.41 73.66 - 

BRAZIL - 128.72 7.74 - 35.11 2.11 

CAN 453.94 122.62 - 123.80 33.44 - 

JAPAN 488.94 319.92 - 133.35 87.25 - 

CHIHKG 564.78 109.16 - 154.03 29.77 - 

INDIA 719.42 94.50 - 196.21 25.77 - 

C_C_Amer - 255.62 - - 69.72 - 

S_o_Amer - 214.40 - - 58.47 - 

E_Asia 318.88 95.08 - 86.97 25.93 - 

Mala_Indo - 154.95 - - 42.26 - 

R_SE_Asia 836.18 127.51 - 228.05 34.78 - 

R_S_Asia 749.15 80.77 - 204.31 22.03 - 

Russia - 128.78 - - 35.12 - 

Oth_CEE_CIS 365.43 115.15 - 99.66 31.41 - 

Oth_Europe 393.22 127.34 - 107.24 34.73 - 

MEAS_Nafr 412.46 80.51 - 112.49 21.96 - 

S_S_Afr 805.55 110.74 - 219.70 30.20 - 

Oceania 578.15 92.58 - 157.68 25.25 - 
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2.3. Domestic Rice Methane 

A review of the current literature shows that U.S. rice production and corresponding methane emissions 

have remained relatively constant between 1990 through 2013. Harvested acres of rice have fluctuated 

between ≈2.5 and 3.6 million acres, and emissions have fluctuated between 7.7 and 11.1 million metric 

tons CO2 equivalent (MMT CO2e) (USDA ERS, 2015; EPA, 2015). The RFS2 RIA FASOM has higher 

projections for future harvested rice acres than the current USDA Projections (USDA OCE, 2016). For 

example, both the Control Case and the Reference Case have higher predicted harvested acres of rice in 

2012 (3.8 million acres for the Reference Case and 3.35 million acres for the Control Case) than were 

actually harvested in eight of the last nine years with 2010 as the only exception (USDA 2015). 

Use of the RFS2 RIA emission factors for rice would under-estimate methane production from rice 

cultivation in most regions between 1990 and 2013 when compared to effective emission factors from 
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the EPA Inventory (EPA, 2015). For example, the RFS2 RIA emission factor for the south central region 

(where approximately70 percent of all rice production occurs) is 2,249.20 kg CO2e/acre compared to the 

effective Inventory emission factor which ranges from approximately 2,800 to 3,100 kg CO2e/acre 

between 1990–2013. The total projected 2012 rice methane emissions from the RFS2 RIA are nearly 

double those of the EPA inventory despite the lower emission factors in the RFS2 RIA. The RFS2 RIA 

estimated 2012 emissions are 17.8 MMTons CO2e for the Control Case and 18.41 MMT CO2e for the 

Reference Case compared to 9.29 MMT CO2e from the EPA inventory and 8.78 MMT CO2e from the 

Food and Agriculture Organization of the United Nations (FAO). The RFS2 RIA values seem inexplicably 

high given the RFS2 RIA estimated acreage and the RFS2 RIA emission factors used. As the RFS2 RIA did 

not provide all of the necessary underlying data, we could not reproduce the RFS2 RIA total emissions to 

compare values to recent data. 

2.3.1. Background on Methane from Rice Production 

Methane is the primary greenhouse gas related to rice production (Gathorne-Hardy, 2013). All rice is the 

United States is grown under continuously flooded, shallow water conditions where drainage does not 

occur except by accident (EPA, 2015). Under flooded conditions, soils become anaerobic (lacking 

oxygen) resulting in the production of methane (CH4) when soil organic matter is decomposed by 

anaerobic methanogenic bacteria. A minor percentage of the methane produced (10–40 percent) is 

released from the soil to the atmosphere either by diffusive transport through the rice plants, soil 

diffusion or bubbling through floodwaters (EPA, 2015). 

The amount of methane produced by rice cultivation is influenced by multiple factors (EPA, 2015; 

Garthorne-Hardy, 2013; Hussain et al., 2015), including: 

 Water management practices (e.g., deepwater (greater than one meter) production, dryland 

production, mid-season drainage, intermittent drainage) 

 Fertilizer practices (e.g., use of urea, ammonium nitrate, ammonium sulfate, organic fertilizers) 

 Residue management (e.g., straw removal, straw burning) 

 Soil temperature 

 Soil type 

 Rice cultivar 

 Cultivation practices (e.g., tillage, seeding and weeding practices)  

2.3.2. Number of crops per season (e.g., primary and ratoon crop) U.S. Rice 
Production Area 

Rice is currently produced in seven states: Arkansas, California, Louisiana, Mississippi, Missouri, and 

Texas, and rice was produced in Oklahoma through 2007 (EPA, 2015; USDA ERS, 2015a). Figure 2-4 
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shows major (75 percent of total national production) and minor (99 percent of total national 

production) rice production areas based on USDA National Agricultural Statistics Service (NASS) county- 

and state-level production data from 2006–2010 (USDA OCE, 2013a). 

 

Figure 2-4: U.S. Map of Average 2006–2010 Major and Minor Rice Crop Areas 

Figure 2-5 shows major (75 percent of total national production) and minor (99 percent of total national 

production) corn production areas in the United States based on USDA NASS county and state-level 

production data from 2006–2010. (USDA OCE, 2013b) The yellow numbers in the figure represents the 

percent each stat contributed to the total national production. 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 38 January 12, 2017 

 

Figure 2-5: U.S. Map of Average 2006–2010 Major and Minor Corn Crop Areas 

Comparison of the two maps indicates that there is no overlap between major corn and rice crop areas, 

with the exception of one county in northern Louisiana and one county in southern Missouri. There is 

some overlap between a major crop area of one crop and a minor crop area of the other crop (i.e. a 

major crop area for corn and a minor crop area for rice or vice versa) and some overlap of minor areas 

of both crops. Overall the data indicate that expansion of corn would likely not result in displacement of 

rice given that the majority of corn is grown in different states (i.e., Iowa, Illinois, Nebraska, Minnesota, 

Indiana) than where the majority of rice is grown (i.e., Arkansas, California, Louisiana, Mississippi). In 

addition, the two states that have counties with overlapping major production areas (Louisiana and 

Missouri) are both minor corn producing states (Missouri contributes 3 percent of national corn 

production and Louisiana contributes less than 1 percent). 

Over the past 60 years, harvested rice acreage has fluctuated, but has shown an overall increase in area 

from 1,815,000 acres in 1959 to 2,919,000 acres in 2014 (USDA ERS, 2015b). In more recent years, rice 

acreage has remained relatively consistent fluctuating from 2,823,000 acres in 1990 to 3,615,000 acres 

in 2010 and back to 2,919,000 acres in 2014 (USDA ERS, 2015b). Table 2-21 presents acres of planted 
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and harvested rice from 1990–2014 and projections of harvested rice for 2014–2023 from multiple 

sources, including the RIA (see table for more details on data sources). The same data are presented 

graphically in Figure 2-6. Harvested acres in the U.S. GHG inventory are consistently higher than 

harvested acres in the USDA Rice Yearbook over the entire time period (likely due to the inclusion of 

both the primary and the ratoon crop harvested acres in the U.S. inventory). 

Table 2-21: U.S. Planted and Harvested Rice (millions of acres) 

Year 
Area Planted 

(2015 Rice 
Yearbook)

a
 

Area 
Harvested 
(2015 Rice 
Yearbook)

a 

Area 
Harvested 
(EPA 2015 

Inventory)
b 

Area 
Harvested 
RFS2 RIA 
FASOM 

Control Case
c
 

Area 
Harvested 
RFS2 RIA 
FASOM 

Reference 
Case

c 

Area 
Harvested 

USDA 
Projections

d
 

1990 2.897 2.823 3.128 - - - 

1991 2.884 2.781 3.071 - - - 

1992 3.176 3.132 3.458 - - - 

1993 2.920 2.833 3.111 - - - 

1994 3.353 3.316 3.644 - - - 

1995 3.121 3.093 3.391 - - - 

1996 2.824 2.804 3.083 - - - 

1997 3.125 3.103 3.382 - - - 

1998 3.285 3.257 3.557 - - - 

1999 3.531 3.512 3.801 - - - 

2000 3.060 3.039 3.338 - - - 

2001 3.334 3.314 3.564 - - - 

2002 3.240 3.207 3.363 - - - 

2003 3.022 2.997 3.223 - - - 

2004 3.347 3.325 3.561 - - - 

2005 3.384 3.364 3.488 - - - 

2006 2.838 2.821 2.949 - - - 

2007 2.761 2.748 2.933 - - - 

2008 2.995 2.976 3.253 - - - 

2009 3.135 3.103 3.364 - - - 

2010 3.636 3.615 3.931 - - - 

2011 2.689 2.617 2.902 - - - 

2012 2.700 2.679 3.048 3.358 3.821 - 

2013 2.490 2.469 2.776 - - - 

2014 2.939 2.919 - - - 2.919 

2015 - - - - - 2.570 

2016 - - - - - 2.771 

2017 - - - 3.722 4.032 2.796 

2018 - - - - - 2.824 

2019 - - - - - 2.824 

2020 - - - - - 2.849 

2021 - - - - - 2.858 

2022 - - - 3.871 4.267 2.883 

2023 - - - - - 2.883 
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a
 USDA ERS (2015b). 

b
 EPA (2015). (Includes both primary and ratoon acres.) 

c
 EPA (2010a). 

d
 USDA OCE (2016). 

 

 

Figure 2-6: U.S. Planted and Harvested Rice (millions of acres) 

2.3.3. U.S. Methane Emission Factors for Rice Production 

For the RFS2 EIA, EPA used regional changes in rice cultivation area predicted by the FASOM model and 

regional emission factors by acre based on 2001 data in the EPA’s Inventory of U.S. Greenhouse Gas 

Emissions and Sinks: 1990–2003 (EPA, 2005). The model then calculated regional methane emissions 

from rice (EPA, 2010b). The RFS2 RIA did not differentiate between primary and ratoon rice crops (the 

second rice crop grown in a season) and assumed that the reduction of rice acreage was the only 

method to reduce emissions related to rice cultivation. 

In contrast, for inventories up to and including the Inventory of U.S. Greenhouse Gas Emissions and 

Sinks: 1990–2011 (EPA, 2013) (during the period when the RFS2 RIA was developed), estimates for 
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methane emissions from rice were based on the revised 1996 IPCC Guidelines14 using separate national 

emission factors for primary and ratoon rice crops. 

After the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2012 (EPA, 2014), subsequent 

inventories (EPA, 2015, EPA, 2016) updated the rice emission factors for specific regions. Table 2-22 

presents the two sets of emission factors using the same regional break down as the RFS2 RIA used. 

Table 2-22: Rice Methane Emission Factors from the Inventory of U.S. Greenhouse Gas Emissions and Sinks 

Region 
EPA Emission factors (1994–2013) EPA emission factors (2014) 

(kg CO2e/acre/season or year) 

  Primary Ratoon Primary Ratoon 

Corn Belt 

2124.50 7891.22 2397.72 7891.22 
South Central 

Southeast 

Southwest 

      Winter Flooded 
Non-Winter 

Flooded 

Pacific Southwest 2124.50 7891.22 2691.11 1345.55 

 

As described above, the inventory and the RFS2 RIA emission factors are not directly comparable as they 

use different formulas to determine rice emissions. However, it is possible to derive and compare the 

effective emission factors from the two studies. To derive the effective emission factor from the 

Inventory data we: 

1. Put each rice producing state into the corresponding RFS2 RIA region category 

2. Added up total emissions in that RFS2 RIA region annually from 1990–2013 

3. Added up total area harvested in each region (including both primary and ratoon acres) 

4. Divided each regional emission by the regional harvested area 

5. Converted the effective emission factor to the same units as those used in the RFS2 RIA (i.e., 

kg CO2e/acre) 

Additionally we derived a national effective emission factor for the entire United States. A comparison 

of the effective inventory emission factors from 1990–2013 and RFS2 RIA emission factors is shown in 

Table 2-23. The RIA values are not annual values and, hence, are provided in the last row of the table. 

                                                           
 

14
 The IPCC 1996 guidelines (IPCC, 1996) for estimating rice methane emissions were updated in the IPCC 2006 guidelines (IPCC, 
2006). However, the EPA does not use the IPCC 2006 guidelines for estimating rice methane emissions as the 2006 guidelines 
recommend using a daily emission factor multiplied by the rice cultivation period, the data for which are not available for U.S. 
rice production. Using the IPCC 1996 guidelines to estimate rice methane emissions is consistent with the Good Practice 
Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC 2000). 
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Table 2-23: Comparison of Inventory (1990–2013) and RFS2 RIA (See Last Row) Effective Emissions Factors 
(kg CO2e/acre) 

Year 

EPA Inventory Emission Factors by Region 

South Central 
Pacific 

Southwest Southeast Corn Belt Southwest United States 

1990 2,815 2,149 4,230 2,399 3,963 2,910 

1991 2,791 2,149 4,230 2,399 3,965 2,902 

1992 2,814 2,149 4,230 2,399 3,968 2,902 

1993 2,802 2,149 4,230 2,399 3,965 2,870 

1994 2,801 2,149 4,230 2,399 3,965 2,873 

1995 2,795 2,149 4,230 2,399 3,965 2,862 

1996 2,823 2,149 4,230 2,399 3,968 2,870 

1997 2,801 2,149 4,230 2,399 3,968 2,825 

1998 2,799 2,149 4,230 2,399 3,968 2,841 

1999 2,769 2,149 4,555 2,399 3,966 2,797 

2000 2,857 2,149 3,994 2,399 4,226 2,859 

2001 2,747 2,149 4,465 2,399 3,965 2,760 

2002 2,585 2,149 4,321 2,399 3,879 2,625 

2003 2,775 2,149 5,145 2,399 3,910 2,753 

2004 2,753 2,149 4,792 2,399 3,821 2,731 

2005 2,553 2,149 2,399 2,399 3,563 2,556 

2006 2,588 2,149 3,610 2,399 3,940 2,597 

2007 2,758 2,149 3,666 2,399 3,853 2,706 

2008 2,847 2,149 3,666 2,399 4,300 2,831 

2009 2,780 2,149 3,968 2,399 4,415 2,791 

2010 2,813 2,149 4,042 2,399 4,325 2,810 

2011 2,827 2,149 3,605 2,399 4,788 2,895 

2012 3,151 2,149 4,077 2,399 4,480 3,026 

2013 3,035 2,149 3,732 2,399 4,622 2,964 

RIA 2,249 1,783 N/A 1,826 4,375 N/A 

 

The comparison of emission factors shows that the in general, the RFS2 RIA emission factors are lower 

than the effective emission factors for the inventory. Specifically the RFS2 RIA emission factors for the 

South Central, Pacific Southwest, and Corn Belt regions are lower than the effective inventory emission 

factors from 1990–2013. In contrast, the RFS2 RIA Southwest emission factor is higher than that of the 

inventory effective emission factor except for in 2009 and 2011–2013, where it is lower. Interestingly, 

the RFS2 RIA does not include emission factors for the Southeast region despite the fact that rice is 

grown there (albeit at very low levels). The majority of U.S. rice is grown in the South Central (an 

average of about 67 percent between 2006–2010) and the Pacific Southwest regions (an average of 

about 21 percent between 2006–2010). A smaller amount is grown in the Southwest region (an average 

of 6 percent between 2006–2010). This suggests that the RFS2 RIA most likely underestimates total 

change in U.S. methane emissions from rice production due to the likely underestimation in the 

respective emission factors used for these regions. 
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2.3.4. Annual U.S. Methane Emissions from Rice Production 

Similar to acreage harvested, annual methane emissions from rice production have fluctuated from 

1990 through 2013, but have remained overall relatively constant. Emissions were 9.2 MMTCO2e in 

1990 and 8.3 MMTCO2e in 2013 (EPA, 2015). The only RFS2 RIA methane emissions data for the Control 

Case or the Reference Case that we could find was for 2012 (EPA, 2009). Table 2-24 shows both EPA and 

FAO estimates for methane emissions from U.S. rice production from 1990–2013 and the the RFS2 RIA 

projection for 2012. 

Table 2-24: Past and Projected Emissions from U.S. Rice Production (MMTCO2e) 

Year 
Emissions from Rice 

Cultivation (U.S. 
Inventory)

a
 

Emissions from Rice 
Cultivation (FAO 

data)
b
 

Emissions from Rice 
Cultivation Control 

Case (RFS2 RIA 
data)

c
 

Emissions from Rice 
Cultivation 

Reference Case 
(RFS2 RIA data)

c
 

1990 9.16 9.26   

1991 9.01 9.12   

1992 10.14 10.27   

1993 9.03 9.29   

1994 10.57 10.87 

  1995 9.81 10.14 

  1996 8.94 9.19 

  1997 9.63 10.17 

  1998 10.19 10.68 

  1999 10.71 11.52 

  2000 9.62 9.96 

  2001 9.89 10.87 

  2002 8.88 10.52 

  2003 8.91 9.83 

  2004 9.77 10.9 

  2005 8.95 11.03 

  2006 7.7 9.25 

  2007 7.99 9.01 

  2008 9.26 9.76 

  2009 9.44 10.17 

  2010 11.1 11.85 

  2011 8.47 8.58 

  2012 9.29 8.78 17.8 18.41 

2013 8.3 - 

  a
 EPA (2015). (Includes both primary and ratoon acres.) 

b
 FAO (2015a). 

c
 EPA (2009). 

 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 44 January 12, 2017 

The data show that FAO emissions projections15 are slightly higher than EPA inventory data for all 

historic years except for 2012 where the FAO emissions projections are slightly lower than those from 

the EPA inventory. The total projected 2012 rice methane emissions from the RFS2 RIA are nearly 

double those of the EPA inventory and the FAO, despite the fact that the RFS2 RIA has lower emission 

factors than the EPA inventory. The RFS2 RIA estimated 2012 emissions are 17.8 MMT CO2e  for the 

Control Case and 18.41 MMT CO2e for the Reference Case compared to 9.29 MMT CO2e from the EPA 

inventory and 8.78 MMT CO2e from the FAO. The RFS2 RIA values seem high given the RFS2 RIA 

estimated acreage and the RFS2 RIA emission factors used. However, as the RFS2 RIA did not provide all 

the data used to create the total emissions numbers, we cannot evaluate the underlying assumptions or 

data used to develop emission values used in the RFS2 RIA to compare values to updated data. 

2.3.5. Conclusions 

A review of the current literature shows that U.S. rice production and corresponding methane emissions 

have remained relatively constant between 1990 through 2013 despite the expansion in corn and corn 

ethanol production. Harvested acres of rice have fluctuated between approximately 2.5 and 3.6 million 

acres, and emissions have fluctuated between 7.7 and 11.1 MMTCO2e during this period (USDA ERS, 

2015; EPA, 2015). In comparison with the EPA inventory data, the RFS2 RIA FASOM data overestimates 

harvested rice acreage in 2012 and underestimates rice emission factors in most regions, when 

compared to effective emissions factors from the EPA inventory between 1990 and 2013. However, the 

RFS2 RIA total projected 2012 rice methane emissions are nearly double those of the EPA inventory and 

the FAO, despite the lower emission factors in the RFS2 RIA. 
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2.4. Domestic and International Livestock 

Aligned with EPA’s final Regulatory Impact Analysis (RIA) (EPA, 2010a) for the revised Renewable Fuel 

Standard Program (RFS2), the Domestic and International Livestock emission categories includes 

emissions, both domestically and internationally, related to domestic corn ethanol production and 

livestock production systems. Internationally we summarize the literature related to emissions 

associated with livestock production systems in various regions with whom the United States has 

significant agricultural and energy trade. Impacts internationally are projected to vary by livestock and 

ethanol feedstock (corn, soy, sugarcane, and switchgrass). 

Livestock production systems include practices that involve raising livestock for meat, eggs, dairy, and 

other products such as leather, fur, and wool. Farmers and other facility operators raise animals in 

either confined, semi-confined, or unconfined spaces. Literature incorporated into this review is mostly 

limited to considering variables related to corn ethanol production, such as changes in livestock 

production that affect the cultivation and use of corn, including use of corn-based feed (including 

distillers grains), land-use demands for domestic livestock production (range, feedlots, pasture), trends 

in typical animal mass (TAM), total population, and the amount of meat and dairy from each animal. 

The international livestock sector is characterized by a dichotomy between developing and developed 

countries. Much of the growth in total meat production between 1980 and 2002 was concentrated in 

countries with rapid economic growth. In developed countries, production and consumption of livestock 

products are growing slowly or not at all. Livestock production in industrialized countries accounts for 53 

percent of agricultural GDP (Thornton, 2010). Particularly of interest are the practices in South America. 

The continent’s livestock industry (especially swine and cattle production) is concentrated in Brazil and is 

characterized by landless monogastric production systems (LLM) and Grassland-based livestock 

production systems (Roman et al., 2006). 

2.4.1. Livestock Emission Sources 

Although there are emissions associated with livestock production that are not directly emitted from 

livestock and their waste (such as due to transportation, animal feed production, or dairy/meat 

processing), this literature review focuses on the two primary sources of emissions from livestock 

included in the RFS2 RIA: enteric fermentation and manure management. Enteric fermentation 

produces methane (“enteric CH4”) and manure management practices result in emissions of CH4 and 

nitrous oxide (N2O). 

/oce/weather/pubs/Other/MWCACP/Graphs/USA/US_Corn.pdf
/oce/commodity/projections/Rice.xls
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2.4.1.1. Enteric Fermentation 

Enteric fermentation is a process through which microbes present in the digestive tract of livestock 

break down food, emitting CH4 as a by-product. Ruminant animals, such as cattle, sheep, and goats, 

have multi-chambered digestive systems that produce more CH4 than those of non-ruminant animals. 

Methane emissions are also produced by monogastric (non-ruminant, e.g., swine) livestock but at a 

magnitude much lower than for ruminant livestock. 

Methane emissions from enteric fermentation depend on a combination of the following factors: 

predominant animal types, the quantity and quality of the diet, use of dietary additives, and the animals’ 

activity data (e.g., work performed, pregnancy rates) (ICF International, 2013; Eve et al., 2014). 

The literature also indicates that a significant component in determining enteric emissions is dietary 

composition, which consists of overall feed intake and feed composition. For example, digestible energy 

(DE) in low-quality feed such as late-season forage is less than that in high-quality feed (e.g., mixed feed 

or spring forage). With lower quality food sources, cattle will need to eat more food in order to get the 

same amount of energy, thus leading to greater emissions in most cases. Increasing the ratio of grains 

(and other concentrates) to forage; increasing dietary fat content; and additives can decrease enteric 

CH4 emissions from cattle (ICF International, 2013; Eve et al., 2014; Gerber et al., 2013). Diets rich in 

biofuel crop residues like distillers grains can have a higher fat content, helping to reduce enteric 

emissions from cattle (Lemenager et al., 2006; Latour and Schinckel, 2007). Expansion of the ethanol 

industry led to increased demand for corn and an increased supply of co-products from the ethanol 

production processes (USDA, 2009). Ethanol co-products have the potential to serve as both an 

economic source of cattle feed (USDA, 2009) and a means to reduce enteric emissions. However, the 

inclusion of additives, such as ionophores, nitrates, and tannins, have unclear long-term benefits in 

terms of reducing enteric CH4 emissions. 

At least one study concludes that cattle consuming steam-flaked corn (SFC)-based diets produce less 

enteric CH4 and preserve more energy than cattle that consume dry-rolled corn (DRC)-based diets. 

However, inclusion of wet distillers grains with solubles (WDGS) at 30 percent of feed composition has 

little effect on enteric CH4 production and energy metabolism (Hales et al., 2012). Another study 

concludes that, compared with use of WDGS, using corn or wheat based DDGs in finishing cattle’s diets 

reduced enteric CH4 emissions by 1 percent and 0.8 percent, respectively (Wunerberg et al., 2013). 

Cows in intensive dairy production systems are typically fed high ratios of forages to concentrates. Feed 

often includes corn silage, alfalfa/ grass silage, alfalfa hay, high-moisture corn, soybean meal, and 

sometimes commodity feeds (e.g., corn gluten and/or dried distillers grains (DDG)). Dairy cows are fed 

diets that support the relevant milk production stage (ICF International, 2013). Although dairy cows are 

fed high quality nutrition, linked to lower enteric CH4 emissions than lower-quality nutrition, they have a 

much higher TAM than beef cattle in the United States (EPA, 2015). 
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2.4.1.2. Manure Management 

Manure management is the collection, storage, transfer, and treatment of animal urine and feces (Eve 

et al., 2014). The anaerobic decomposition of manure results in CH4 production and both direct and 

indirect pathways16 results in N2O emissions. Manure management systems include variations within the 

following categories: solid storage, slurry systems, lagoons, and spreading. 

The amount of CH4 and N2O generated from manure management practices depends on the animal 

type, animal diet, and activity data. However, the primary determinant of manure management GHG 

emissions is the system used to manage manure (e.g., solid storage, anaerobic lagoons, ponds). The 

same quantity of manure will generate different CH4 and N2O emissions as the management practice 

defines the emission rate (ICF International, 2013; Eve et al., 2014; Gerber et al., 2013). Manure stored 

under anaerobic conditions produce a significant portion of all manure-related emissions (specifically, as 

CH4), so covering anaerobic lagoons or utilizing other anaerobic digesters provides a good opportunity to 

reduce these emissions (ICF International, 2013; Gerber et al., 2013). 

2.4.2. Domestic Livestock Emissions 

Overall emissions from domestic livestock production are dominated by enteric CH4, but manure 

management practices produce emissions that are still a significant component of total agricultural 

sector emissions. Enteric CH4 is more closely linked to diet, and thus corn (and other grain) production, 

than are the GHGs produced by manure management. Manure management mitigation methods focus 

primarily on capturing existing emissions, rather than through dietary modification. 

2.4.2.1. Domestic Livestock Enteric Fermentation Emissions 

In 2014, enteric CH4 emissions in the United States were 164.3 MMT CO2e, (i.e., more than 65 percent of 

the emissions from animal production systems). More than 71 percent was from beef cattle and more 

than 96 percent was from beef and dairy cattle together (EPA, 2016). Enteric CH4 is the primary GHG 

produced by dairy cows (on a per-head basis). However, there are more beef cattle than dairy cows in 

the United States, consequently, more overall enteric CH4 is produced by beef cattle (ICF International, 

2013). 

The model used in the RFS2 RIA (FASOM) projects domestic enteric CH4 emissions using 2001 average 

emissions per head according to the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2003 

(EPA, 2005) and multiplying them by the projected change in populations. Therefore, emissions are 

based only on populations, trends for which are discussed in Section 2.4.2.3. 

                                                           
 

16
 Indirect routes for producing N2O include: (1) the direct production of NH3 and NOx later reacting further to produce N2O and 
(2) runoff and leaching of N from manure into groundwater, also eventually reacting further to produce N2O (Eve et al., 2014; 
EPA, 2015). 
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The annual emission factors used in the RFS2 RIA and the observed emission factors in 2013 are 

provided in Table 2-25. The cattle emission factors cited in the RFS2 RIA date to 2001 (EPA, 2010a) and 

have since increased due to multiple factors: typical animal masses (TAMs) in the United States are 

increasing, dietary factors vary, and because the sub-populations of cattle (i.e., bulls, heifers, calves) and 

their feeding situations are constantly in flux. 

Table 2-25: Enteric CH4 Annual Emission Factors 

Livestock 
Type 

RFS2 RIA Emission Factor (kg CH4/head) 2013 Emission Factor (kg CH4/head), per EPA, 2015 

Dairy 121 144
a
 

Beef 53 64
b
 

Poultry N/A N/A 

Swine
c
 1.5 1.5 

a
 Includes only mature dairy cows. 

b
 Includes all but beef calves. 

c
 Swine emissions are calculated using a Tier 1 emission factor. 

 

2.4.2.2. Domestic Livestock Manure Management Emissions 

In 2015, manure management practices in the United States resulted in GHG emissions of 78.8 MMT 

CO2e. Emissions from cattle alone totaled 48.1 MMT CO2e, 64 percent as CH4 and 36 percent as N2O. 

Beef cattle, dairy cattle, and swine collectively account for more than 92 percent of all emissions related 

to manure management. The remaining 8 percent is attributed to poultry, sheep, horse, and goat 

production (EPA, 2015). 

Similar to the method for estimating domestic enteric CH4 emissions changes, the model used in the 

RFS2 RIA (FASOM) projects domestic emissions from manure management using 2001 average 

emissions per head according to the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2003 

(EPA, 2005) and multiplying them by the projected change in populations.  

The emission factors used in the RFS2 RIA and the observed emission factors in 2013 are provided in 

Table 2-26. Note that a number of the emission factors have increased, particularly those related to 

dairy. 

Table 2-26: Domestic Manure Management Annual Emission Factors 

Livestock Type 
RFS2 RIA CH4 

Emission Factor 
(kg CH4/head)

a
 

2013 CH4 Emission 
Factor (kg CH4/head), 

per EPA, 2015
b
 

RFS2 RIA N2O 
Emission Factor (kg 

N2O/head)
a
 

2013 N2O Emission 
Factor (kg N2O/head), 

per EPA, 2015
b
 

Dairy 38.6 68.8 0.68 1.03 

Beef 1.71 1.6 0.23 0.34 

Poultry 0.07 0.1 0.01 0.002 

Swine 13.78 14.0 0.02 0.09 
a
 EPA (2010);  

b
 EPA (2015). 
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2.4.2.3. Domestic Livestock Emission Trends 

Since 1990, domestic livestock GHG emissions have increased significantly overall. Enteric CH4 emissions 

have increased only slightly (less than 1 percent). Although cattle populations have decreased over this 

time, these emissions have ticked upward due to an increase in emission factors per head, as discussed 

above. Manure management-related emissions of CH4 and N2O have increased more significantly (about 

65 percent and 25 percent, respectively) due to the increased use of liquid manure management 

systems in large operations (concentrated animal feeding operations or CAFOs), which are more 

emission-intensive than dry storage systems (EPA, 2015). 

Emission factors for beef cattle have increased on a per-head basis. However, emissions per pound of 

beef produced have decreased (ICF International, 2013). An increase in TAM of more than 10 percent 

resulted in only a 6 percent increase in enteric CH4 (EPA, 2012). 

The recent literature indicates that the use of WDGS in feedlot diets has increased in the Southern Great 

Plains as a result of the growing ethanol industry. In the past few years, ethanol producers have 

benefited from improved margins for DDGs. Sales of DDGs now provide a significant portion of the total 

revenue received by ethanol facilities, offsetting almost one-third of the corn feedstock price. Increased 

demand for both wet and dry distillers grains as animal feed in the United States has caused an increase 

in the margins for the production of ethanol (EIA, 2014). Hales et al. (2013) conclude that enteric CH4 

production as a proportion of Gross Energy (GE) intake increases linearly with WDGS concentration. This 

relationship may increase enteric CH4 emissions, but this is not yet documented as a trend with the 

overall increasing use of distillers grains. 

The RFS2 RIA projects livestock population changes as a result of increased ethanol production by 2022. 

These projections are shown in Table 2-27. The most significant change is in poultry populations under 

all scenarios (–58.85 million head). Swine would see significant increases under only the corn stover 

ethanol and switchgrass ethanol scenarios (9.15 and 7.80 million head, respectively) (EPA, 2010a). The 

livestock populations are based on a baseline of the 1990–2003 average populations in the Inventory of 

U.S. Greenhouse Gas Emissions and Sinks: 1990–2003 (EPA, 2005). 

Table 2-27: Change in Domestic Livestock Herd Size by Scenario, 2022 

Livestock 

Type 

Corn Ethanol Soy-based Biodiesel Corn Stover Ethanol Switchgrass Ethanol 

mmHead % change mmHead % change mmHead % change mmHead % change 

Dairy −0.02 −0.31% −0.01 −0.17% 0.00 −0.01% −0.02 −0.36% 

Beef 0.09 0.14% −0.11 −0.18% 0.95 1.56% 0.21 0.34% 

Poultry −58.84 −0.79% −58.84 −0.79% −58.84 −0.79% −58.84 −0.79% 

Swine −0.22 −0.17% 0.24 0.19% 9.15 7.27% 7.80 6.20% 

Source: EPA, 2010a. 
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For purposes of comparison, we present below average annual U.S. populations between the 1990–

2003 for dairy, beef, poultry, and swine, as well as the actual 2013 populations (EPA, 2015). The trend in 

swine population is consistent with projections for the corn stover and switchgrass ethanol scenarios in 

the RIA, while the trend for dairy cattle, slightly decreasing, is consistent across all scenarios except corn 

stover ethanol. In the RIA, significant declines in beef population were not projected in any scenario; 

however, in 2011 drought resulted in early slaughter of beef herds in the Southern Plains region, which 

represents a significant portion of all domestic beef cattle. Poultry population was projected to decrease 

in all scenarios. As of 2013, the population had increased significantly in comparison to the 1990–2003 

baseline. 

The RFS2 RIA estimates emissions based only on the projected change in livestock populations, using a 

per-head emission factor as described in Section 2.4.2.1. The control case livestock populations 

projections are not available to compare to the historical populations available from the Inventory 

of U.S. Greenhouse Gas Emissions and Sinks (see Table 2-28). 

Table 2-28: Changes in Domestic Livestock Populations between the 1990–2003 Average Populations and 
2013 Populations 

Livestock 
Type 

1990–2003 Average Population 
(‘000 head) 

2013 Population 
(‘000 head) 

% 
Change 

Dairy 18,524 18,482 −0.23 

Beef 85,515 75,705 −11.47 

Poultry 1,867,488 2,043,855 +9.45 

Swine 58,616 65,747 +12.17 

Source: EPA, 2015. 

 

2.4.3. International Livestock Emissions 

Gerber et al. (2013) show that global GHG emissions from livestock production17 are estimated at 

3.4 metric gigaton CO2e per year for the 2005 reference period. About 2.7 metric gigaton CO2e of the 

sector’s emissions are due to enteric fermentation, with the remainder due to manure management 

practices. Cattle represent about 65 percent of sector emissions, with swine, poultry, buffalo and small 

ruminants each having emissions levels between 7 and 10 percent of sector emissions (Gerber et al., 

2013). 

2.4.3.1. International Livestock Enteric Fermentation Emissions 

Enteric fermentation is the largest source of global livestock emissions (about 79 percent). Of the enteric 

CH4 emissions, most of it is produced by cattle (77 percent), with buffalo producing 13 percent and the 

rest by small ruminants (such as sheep) (Gerber et al. 2013). In Brazil, a country that is a source of 

                                                           
 

17
 Although Gerber et al. (2013) assesses the livestock supply chain, in this context we incorporate only the direct emissions 
from livestock production (enteric fermentation and manure management). 
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American animal product imports, cattle enteric fermentation accounts for 68 percent of all CH4 

emissions from agriculture. Beef cattle are responsible for 82 percent of all enteric methane emissions in 

the country (Barioni, n.d.). 

The RFS2 RIA models enteric CH4 emissions with default emission factors for each region. Therefore, 

similar to the method for calculating domestic enteric CH4 emissions, the trends are based only on 

livestock population projections, discussed in Section 2.4.3.3. 

The enteric CH4 emissions factors used in the RFS2 RIA are provided in Table 2-29. 

Table 2-29: Enteric CH4 Emission Factors Used in the RFS2 RIA 

Enteric Fermentation (kg CH4/head/year) Diary Cattle Swine Sheep 

North America 121 53 1.5 8 

Western Europe 109 57 1.5 8 

Eastern Europe 89 58 1.5 8 

Oceania 81 60 1 5 

Latin America 63 56 1 5 

Asia 61 47 1 5 

Africa and Middle East 40 31 1 5 

Indian Subcontinent 51 27 1 5 

Source: EPA, 2010a. 

 

2.4.3.2. International Livestock Manure Management Emissions 

Globally, manure management practices emit 0.7 MMT CO2e per year (about 21 percent of global 

agricultural emissions).  

The RFS2 RIA models CH4 emissions from manure management with default regional factors and N2O 

using IPCC’s default emission factors for each region (IPCC, 2006). Therefore, similar to the method for 

calculating domestic emissions, the trends are based only on livestock population projections, discussed 

in Section 2.4.3.3. 

The CH4 emission factors used for international manure management practices in the RFS2 RIA are 

provided in Table 2-30. 

Table 2-30: Manure Management CH4 Emission Factors Used in the RFS2 RIA 

Manure Management (kg CH4/head/year) Diary Cattle Swine Sheep Poultry 

North America 78 2 23.5 0.28 0.02 

Western Europe 51 15 15.5 0.28 0.02 

Eastern Europe 27 13 6.5 0.28 0.02 

Oceania 29 2 18 0.15 0.02 

Latin America 1 1 1 0.15 0.02 
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Asia 18 1 4 0.15 0.02 

Africa and Middle East 1.5 1 2 0.15 0.02 

Indian Subcontinent 5 2 4 0.15 0.02 

Source: EPA, 2010a 

 

2.4.3.3. Trends in Emissions from International Livestock Production 

Literature analyzing the ongoing growth of corn-based ethanol production suggests that production of 

pork and poultry would be reduced in response to higher corn prices and increased utilization of corn by 

ethanol plants. A report by Elobeid et al. (2006) estimates the long-run potential for ethanol production 

by calculating the corn price at which the incentive to expand ethanol production (e.g., increase the 

blend wall) disappears. 

More recent studies have examined the impact of the biofuel sector on livestock production. There is 

strong evidence of the increasingly tight linkage between the energy and agricultural sectors as a result 

of the expanding biofuel sector. The biofuel sector expands with a higher energy price, raising prices of 

agricultural commodities through demand-side adjustments for primary feedstocks and supply-side 

adjustments for substitute crops and livestock (Hayes et al., 2009). Demand for distillers grains is 

growing in foreign markets. In 2013, total U.S. exports of distillers grains were 9.7 million metric tons, 

more than double the 4.5 million metric tons of total exports in 2008. China has played a key role in 

driving this growth, with total distillers grains exports to China rising from 1.4 million metric tons in 2011 

to 4.5 million metric tons in 2013 (EIA, 2014). This trend has continued through 2015 with 12.7 million 

metric tons of total U.S. exports of distillers grains, of which 6.5 million metric tons went to China 

(USDA, 2016b). 
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2.5. International Land-Use Change 

The FAPRI-CARD model was used to determine the number of hectares that will change internationally 

(excluding the United States) based on the impact of RFS2. Based on a review of published literature, it 

seems that the land-use patterns that were anticipated, particularly in South America and Africa, have 

not materialized. 

2.5.1. Activity Data Used in RFS2 RIA 

Iowa State University and the Center for Agricultural and Rural Development developed and manage 

FAPRI-CARD’s international module. The module is based on multi-market, partial-equilibrium, 

econometric, non-spatial models. It considers a number of factors including population and GDP growth; 

production and consumption trends; existing trade patterns; and both international and domestic 

pricing. The model evaluates grains, oilseeds, livestock, dairy products, sugar and biofuels (ethanol and 

biodiesel) across the 54 major producing countries and regions. The area harvested was determined for 

each of the countries and regions, however FAPRI-CARD does not predict what type of land will be 

affected only the number of acres. EPA’s RFS2 RIA determined the type of land using GIS data. Results 

showed that the international crop area harvested changed by 789 thousand hectares for the Corn 

Ethanol scenario in 2022. 

FAPRI-CARD determined the change in harvested hectares for 20 crops in 2022, as seen below in Figure 

2-7. The RIA considers only the hectares associated with the “first crop”. First crop is determined by 

subtracting the change in hectares from crops that would be planted for winter and spring harvest from 

the total hectares. The harvested hectares subtracted were for winter barley, corn safrinha, the second 

cropping of dry beans, winter wheat and hay. The first crop data was then separated into annual and 

http://www.ers.usda.gov/media/147398/fds09d01.pdf
https://apps.fas.usda.gov/gats/ExpressQuery1.aspx
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perennial crops. Annual crops included all first crops except for palm and sugarcane hectares. Perennial 

crops were assumed to be palm and sugarcane harvested hectares. The change in hectares harvested 

for 2022 is shown in Table 2-31.
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Table 2-31: FAPRI-CARD Change in Harvested Hectares (000s ha) in 2022 (EPA, 2010c) 
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FIRST CROP TOTAL 

Algeria 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 

Argentina 1 0 36 0 0 0 0 0 0 0 0 0 0 −36 0 0 −4 −9 0 0 −13 

Australia −2 0 0 0 0 0 0 0 0 0 −3 0 0 0 0 0 0 2 0 0 −2 

Bangladesh 0 0 0 0 0 0 0 0 0 0 0 −17 0 0 0 0 0 0 0 0 −17 

Brazil: Amazon Biome 0 0 13 1 0 0 0 0 0 0 0 1 0 21 0 1 0 0 0 0 36 

Brazil: Central-West Cerrados 0 0 65 94 −9 0 0 0 0 0 0 −7 0 55 0 2 0 0 0 0 105 

Brazil: Northeast Coast 0 0 21 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 24 

Brazil: North-Northeast Cerrados 0 0 5 8 0 −1 0 0 0 0 0 0 0 29 0 0 0 0 0 0 32 

Brazil: South 0 1 125 90 0 −4 2 0 0 0 0 −1 0 −55 0 −14 0 0 −2 0 51 

Brazil: Southeast 0 0 87 12 0 −1 0 0 0 0 0 0 0 −18 0 −1 0 0 0 0 67 

Canada −1 0 16 0 0 0 0 0 0 0 −18 0 0 −1 0 0 0 −4 0 0 −8 

China 0 0 149 0 −6 0 0 0 0 −6 −18 −78 0 −18 0 −1 −2 11 0 0 30 

New Zealand 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Colombia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cuba 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Egypt 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −3 0 0 5 

EU 10 0 7 0 0 0 0 0 0 0 −7 0 0 0 0 0 2 15 0 0 27 

Guatemala 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

India 0 0 78 0 60 0 0 0 0 −14 −32 −11 5 −24 0 −1 0 −17 0 0 42 

Indonesia 0 0 29 0 0 0 0 0 −1 0 0 5 0 0 0 0 0 0 0 0 32 

Iran 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 4 0 0 5 

Iraq 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Ivory Coast 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 

Japan 0 0 0 0 0 0 0 0 0 0 0 56 0 0 0 0 0 0 0 0 56 

Malaysia 0 0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 −2 

Mexico 1 0 39 0 0 0 0 0 0 0 0 0 3 0 0 0 0 −1 0 0 43 

Morocco 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 

Myanmar (Burma) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nigeria 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 31 

Africa, Other −1 0 61 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 57 

Asia, Other −1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 −4 
CIS, Other 0 0 0 0 2 0 0 0 0 0 0 0 0 −1 0 0 −2 1 0 0 −1 

Eastern Europe, Other 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 2 

Latin America, Other 0 0 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 26 

Middle East, Other −3 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 

Pakistan 0 0 11 0 −1 0 0 0 0 0 0 3 −1 0 0 0 0 −17 0 0 −4 
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FIRST CROP TOTAL 

Paraguay 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 0 0 0 0 0 0 −4 

Peru 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Philippines 0 0 17 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 29 

Rest of World 1 0 38 0 0 0 0 0 0 −6 −2 89 4 −10 0 1 −7 −1 0 0 107 

Russia −4 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

South Africa 0 0 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 

South Korea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Taiwan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thailand 0 0 5 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 7 

Tunisia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 3 

Turkey 0 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −4 

Ukraine −5 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −8 0 0 −7 

Uruguay 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

United States 12 0 601 0 −52 0 0 −3 0 −1 −5 0 7 −343 −1 0 −9 −70 0 −16 136 

Uzbekistan 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 

Venezuela 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vietnam 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 

Western Africa 0 0 0 0 −7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −7 

WORLD TOTAL 8 1 1,492 205 −23 −4 3 −3 −4 −28 −84 59 47 −404 −1 −13 −21 −94 −2 −16 926 

FOREIGN TOTAL −4 1 891 205 28 −4 3 0 −4 −27 −79 58 40 −60 0 −13 −12 −24 −2 0 789 
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The foreign hectare totals are the World total minus the United States’ total. The changes in hectares from FAPRI-CARD shown in Table 2-31 are 

also presented in Figure 2-7. 

 

Figure 2-7: Corn Only Scenario Compared to Control Scenario: Changes in Harvested Hectares (000 ha) by 2022 (EPA, 2010a) 
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To calculate the international land-use change impact, the FAPRI-CARD results were subsequently 

multiplied by the country-specific emission factors developed by Winrock using satellite data to analyze 

recent land-use changes around the world. The satellite data were combined with various estimates of 

carbon stocks associated with different types of land at the state level in order to determine the land-

use change by country (EPA, 2010b). 

2.5.2. Comparison of Predicted Results to Actual Land-Use Trends 

Literature published since the release of the RFS2 RIA indicates that drivers exist that were not 

considered during the RIA development. These drivers include how land is allocated to biofuels, and 

regional policies and trends in Brazil. 

Figure 2-8 shows a comparison of the annual forest area lost in the Brazilian amazon compared to U.S. 

corn ethanol production. Despite the increase in corn ethanol production (from 3.4 billion gallons in 

2004 to 14.8 billion gallons in 2015), deforested land in Brazil decreased over the same period. 

 

Figure 2-8: Comparison of Brazilian Deforestation (sq. km) and U.S. Corn Ethanol Production (billion 
gallons) by Year (Sources: Deforestation from the Brazilian National Institute of Space Research (INPE, 

2014); U.S. corn ethanol production from the U.S. Energy Information Administration (EIA, 2015)) 

A report by Boland and Unnasch (2014) entitled “Carbon Intensity of Marginal Petroleum and Corn 

Ethanol Fuels” presents a broad range of international land-use change emission estimates for corn 

ethanol ranging from Searchinger’s 104 g CO2e/MJ to Argonne National Laboratory’s analysis of 9.0 g 
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CO2e/MJ. The latter estimate used GTAP model results and applied more accurate carbon stock factors 

than those used by Tyner et al. (2010). These results were incorporated into Argonne National 

Laboratory’s GREET 1 2013 update. Boland and Unnasch (2014) comment that although multiple 

analyses use the Global Trade Analysis Project (GTAP) modeling framework (including CARB’s Low 

Carbon Fuel Standard; Tyner et al., 2010; and GREET1_2013), different parameter estimates, model 

assumptions, and treatment of data will cause disparities in the results. Study results are ordered by 

year published in Figure 2-9. 

 

Figure 2-9: Comparison of International Land-use Change from Various Sources (Boland and Unnasch, 2014) 

Kim et al. (2012) note the allocation methods for land use between fuel, animal feed, and human feed. 

The publication states that international LUC GHG emissions should be allocated between ethanol and 

human dietary preferences via a human nutrition-based method (Kim et al., 2012). By applying their 

proposed approach, they lowered the estimate of GHG emissions by up to 73 percent when compared 

to the GTAP model output (Kim et al., 2012). This study elicits the notion that allocation of land goes 

beyond the decisions made by ethanol producers and is subject to the consumer’s preference. The 

paper suggests that price competition of vegetable-based and animal-based proteins should be included 

in these economic models (Kim et al., 2012). 

The Institute for International Trade Negotiations (ICONE) produced a 2013 report, “Comparing the 

trends and strength of determinants to deforestation in the Brazilian Amazon in consideration of biofuel 

policies in Brazil and the United States,” that outlines possible drivers of deforestation in Brazil that are 

not considered within economic modelling. Rural settlements, which are not considered in economic 

modeling, are responsible for 15 percent of the total area deforested in the Amazon. The report notes 

that land reform and the establishment of rural settlements has increased significantly between 1995 

and 2009. The rate of deforestation has also increased during this time period, however the increase has 

not been linear (Nassar et al., 2013). The report also observes that Brazilian states with higher pasture 

area also have higher rates of secondary vegetation. This trend indicates that areas previously occupied 

2008 2011 2012 2010 2010 2013 
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by pasture or annual crops are now in recovery for natural vegetation (Nassar et al., 2013). This 

reversion to natural land is an important consideration for long-term, land-use trend analyses. Lastly, 

recent Brazilian policies have targeted deforestation and would not be present in the current economic 

modelling. These policies include the Climate Change National Policy launched in 2010 which targets 

deforestation reduction until 2020 and efficient public policies in the Legal Amazon which lead to 

enforcement and compliance with the established laws and implementation of interim measures 

(Nassar et al., 2013). 

Other literature evaluates whether the increased demand for crops would cause land expansion or more 

efficient use of the land. Bruce Babcock and Zabid Iqbal’s publication “Using Recent Land Use Changes to 

Validate Land Use Change Models” concludes increases in harvested land may be due to the more 

intensive use of land already in production rather than being new land into production. Based on data 

from the Statistics Division of FAO (FAOSTAT), the largest changes in harvested land were found in India, 

China, Africa, Indonesia, and Brazil (Babcock and Iqbal, 2014). Figure 2-10 looks at the change in 

harvested land between an average of 2010–2012 and an average of 2004–2006 FAOSTAT data. The 

paper notes that while an increase in harvested land may suggest an increase in land conversion, the 

increase in harvested land is likely the result of double and tripled cropped land and not the result of an 

increase in planted land. 
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Figure 2-10: Change in Harvested Land 2010–2012 Average Minus 2004–2006 Average (Note: Percentage 
indicates country's share of total world change) (Source: Babcock and Iqbal, 2014) 

Babcock and Iqbal’s analysis finds that, for different countries, a connection exists between harvested 

land area and double cropped land area. If the change in the second cropland area over time is positive, 

the perspective is that the FAO data on total harvested land over-estimates the land-use change by that 

amount. Table 2-32 indicates harvested land data for Brazil and India where the difference in harvested 

land implies that land change is driven by land-use intensification as opposed to land expansion, as 

implied in the RFS2 RIA FAPRI-CARD results (Babcock and Iqbal, 2014). 

Table 2-32: Changes in Harvested Land and Changes in Double Cropping (Babcock and Iqbal, 2014) 

Country 
Change in Harvested Land 

(million ha) 
Change in Double Cropping 

(ha) 

Percentage of Land Area that 
can be Attributed to 

Intensification of Land Use 

Brazil 5.4 4.1 76% 

India 12.4 −0.147 0% 
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The intensification of land use in India shown in Table 2-32 is attributed to a 6 million hectare increase in 

irrigated land. More irrigation allowed for a greater proportion of planted acres to be harvested. India 

also increased its support prices and input subsidies in the mid-2000s, which increased the value of the 

established cropland. The increased change in harvested land in sub-Saharan Africa is likely a better 

measurement of the change in planted land given the proportion of African crop production that occurs 

on small farms. Increased food production in the region matches the increase in the amount of land 

planted. Lack of technology and capital signifies that double-cropping is not common. World-wide, the 

extensive change (land expansion) was a net increase of 24 million hectares from 2004–2006 to 2010–

2012, while the aggregate intensive land-use change was 49.1 million hectares (Babcock and Iqbal, 

2014). This difference led Babcock and Iqbal to conclude that the reliability of current models would be 

increased if intensification of land use was considered. 

2.5.2.1. Actual Land-Use Trends by Region 

The FAPRI-CARD and GTAP models are the most widely used international models to predict land-use 

changes associated with increased biofuel production. Both models allow crop yields to respond to an 

increase in pricing, however they do not allow for adjustments in land-use intensity. Given the observed 

trends presented above in Table 2-32, Babcock and Iqbal conclude that specific countries (e.g., Brazil) 

and regions included within the EPA’s Renewable Fuel Standard Program Regulatory Impact Analysis 

(RFS2 RIA) analysis have not followed the predicted trends from the FAPRI-CARD analysis (Babcock and 

Iqbal, 2014). 

Babcock and Iqbal looked at the intensive and extensive margin for each country/region in order to 

determine how much of the change in land was attributable to land expansion or double cropping. 

Intensive margin changes are those due to double cropping and a decrease in land that is planted but 

not harvested. Extensive margin changes are those that show an increase in harvested land. Figure 2-11 

below shows their analysis of FAOSTAT data between 2004–2006 to 2010–2012 for each country/region 

indicating whether the change in harvested land area was intensive or extensive (Babcock and Iqbal, 

2014). 
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Figure 2-11: Extensive and Intensive Land-use Changes: 2004–2006 to 2010–2012 from FAOSTAT (Source: 
Babcock and Iqbal, 2014) 

The publication highlights two regions where the FAPRI-CARD land-use predictions did not come to 

realization: South America and sub-Saharan Africa (Babcock and Iqbal, 2014). 

2.5.2.2. Brazil and Argentina 

The FAPRI-CARD analysis for the RFS2 RIA showed a high concentration of the land-use change occurring 

in Brazil which Babcock and Iqbal (2014) believe was over-estimated. The paper compares the FAPRI-

CARD prediction to the extensive land-use change that actually occurred. They conclude that the 

predicted land-use change within Brazil due to higher prices is far too high relative to the surrounding 

countries. The FAPRI-CARD results predicted almost no land-use change in Argentina due to high prices 

(Babcock and Iqbal, 2014). However, as shown in Figure 2-12, Argentina increased land use at the 

extensive margin almost four times the rate of Brazil (Babcock and Iqbal, 2014). 

2.5.2.3. Africa 

FAPRI-CARD includes a limited number of crops for a limited number of Africa countries and therefore 

implicitly assumes that commodities produced in Africa will not reach world markets. The paper 
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comments that the large land-use changes shown in Figure 2-12 would have occurred regardless of high 

commodity prices (Babcock and Iqbal, 2014). Based on this trend, the FAPRI-CARD results for the RFS2 

RIA underestimated Africa’s connection to the world commodity market, and the impact that the 

connectedness would have on extensive land-use change (Babcock and Iqbal, 2014). 

2.5.3. Alternative to FAPRI-CARD Modelling 

Given that the attributes and assumptions of the FAPRI-CARD analysis may not reflect actual land use 

change trends, other models provide an alternative analysis to develop international land-use estimates. 

FAPRI-CARD, as noted in Section 2.5.1, is a partial-equilibrium model that is multi-market and non-

spatial.  Because the model is non-spatial, it does not distinguish between the sources and destinations 

of trade between regions and countries (FAPRI, 2008). FAPRI did not develop an updated 2011 baseline 

due to budget constraints, causing this data output to be antiquated.  

GTAP is a computable equilibrium model with perfect competition and links production and 

consumption by region. The GTAP-BIO model is specifically tailored to estimate the land use impact of 

an exogenous policy shock. The GTAP-BIO database has been updated based on trends in land-use 

patterns and updated data are available. In the EPA RIA analysis, geospatial data was used to distinguish 

which types of land were converted and reverted while GTAP’s output includes this modeled data. 

GTAP allows three land types to be used for biofuel production: forest, grassland, and cropland-pasture 

land. Crop-pasture land is agricultural land that has been converted to agriculture dominated by the 

production of biofuel feedstocks. GTAP results are available for two pertinent biofuel production 

scenarios. Both scenarios reflect a shock of 11.59 billion gallons of increased demand for corn as a 

feedstock commodity. Scenario Case A was modeled in 2011 and Case H was modelled in 2013 (Argonne 

National Laboratory, 2014). The production scenarios are shown below in Table 2-33 and were taken 

from Argonne National Laboratory’s Carbon Calculator for Land Use Change from Biofuels Production 

(CCLUB) model. 

Table 2-33: GTAP Modeling Scenarios (Argonne National Laboratory, 2014) 

Case
18

 Case Description Gallons Source 

A An increase in corn ethanol production from its 2004 level (3.41 billion 
gallons [BG]) to 15 BG 

11.59 Taheripour et al., 
2011 

H An increase in corn ethanol production from its 2004 level (3.41 BG) to 15 
BG with GTAP recalibrated land transformation parameters 

11.59 Taheripour and 
Tyner, 2013 

 
Although Case A and H model the same production volume, there were key aspects within the GTAP 

model run that cause different results. 

                                                           
 

18
 Note: Case lettering is referred to within the cited publications. 
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 Land Transformation: Land transformation elasticity reflects the ease of land transition from one 

state to another. A low value indicates limited land transitions. In 2011, GTAP included only one land 

transformation elasticity for the world. Taheripour and Tyner (2013) updated the land 

transformation data to develop region-specific elasticities using two United Nations Food and 

Agriculture Organization land-cover datasets. The updates allowed for determination of changes in 

agricultural land area and the characterization of changes in harvested area for crop types. Based on 

this change, Taheripour and Tyner (2013) found that that the United States moved a sizeable 

amount of agricultural land to produce corn and oilseed crops without significant expansion in 

overall agricultural land (Argonne National Laboratory, 2014). 

 Treatment of Conversion Costs: In 2011, converting pasture and forest to cropland cost the same 

amount. In 2013, GTAP was adjusted to reflect the greater cost of converting of forest to cropland 

compared to converting pasture to cropland. In the updated dataset, it is more costly to convert 

forest to cropland than in the prior model version. 

Taheripour and Tyner (2013) used observed land-use trends as a guide for the most recent update of 

GTAP. This methodology was used to reconcile the differences between modeled predictions and the 

observed trends. They specifically address how land-use changes responded to changes in global 

commodity pricing. 

The raw GTAP data is grouped by land-use type (forest, grassland, cropland pasture, and cropland). Each 

country/region contains the hectares converted for each of the 18 Agro-ecological Zones (AEZ). A 

summary table of the GTAP total hectares by region for Scenario A is shown below in Table 2-34 and 

Scenario H is shown in Table 2-35 (Argonne National Laboratory, 2014). 

The GTAP 2011 data (Scenario A) shows an increase in international (excluding U.S.) Forest and Cropland 

acres while there is a decrease in Grassland and Cropland-Grassland acres. The international change in 

hectares for GTAP 2013 output shows similar trends for Cropland, Grassland, and Cropland-Grassland 

hectares although the change for each category is consistently smaller. For the change in Forest 

hectares, the GTAP 2013 output shows a decrease in area change—a difference of 123,249 hectares. 
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Table 2-34: Scenario Case A—GTAP Output Taken from Argonne National Laboratory's CCLUB Model. Results Generated from Taheripour and Tyner 
(2011) and Taken from Argonne National Laboratory’s CCLUB Model (Argonne National Laboratory, 2014) 

Description 
United 
States 

European 
Union 27 

Brazil Canada Japan 
China and 
Hong Kong 

India 
Central and 
Caribbean 
Americas 

South and 
Other 

Americas 
East Asia 

Malaysia 
and 

Indonesia 

 
(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

Forests −331,465 −79,923 41,670 −116,440 −3,069 23,469 −2,137 32,240 81,988 3,992 5,567 

Grasslands −639,484 −46,108 −123,236 −57,213 −455 −74,127 −3,086 −52,806 −143,149 −4,818 −3,735 

Cropland-
Grassland −1,168,943 0 −238,170 0 0 0 0 0 0 0 0 

Cropland 970,916 126,034 81,625 173,636 3,526 50,663 5,230 20,560 61,167 822 −1,844 

            

Description 
Rest of 

South East 
Asia 

Rest of 
South Asia 

Russia 

Other East 
Europe and 

Rest of 
Former 

Soviet Union 

Rest of 
European 
Countries 

Middle 
Eastern and 
North Africa 

Sub Saharan 
Africa 

Oceania 
Countries 

Totals 
Internationa
l Total (w/o 

USA) 

 
 

(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

 Forests 2,609 −1,824 185,508 −21,230 −24 −101 −45,781 −859 −225,811 105,654 

 Grasslands −5,256 −22,341 −194,098 −84,787 −1,548 −84,989 −225,457 −85,234 −1,851,927 −1,212,443 

 Cropland-
Grassland 0 0 0 0 0 0 0 0 −1,407,113 −238,170 

 Cropland 2,659 24,161 8,640 105,999 1,571 85,144 271,213 86,102 2,077,826 1,106,910 
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Table 2-35: Scenario Case H—GTAP Output Taken from Argonne National Laboratory's CCLUB Model. Results Generated from Taheripour and Tyner 
(2013) and Taken from Argonne National Laboratory’s CCLUB Model (Argonne National Laboratory, 2014) 

Description 
United 
States 

European 
Union 27 

Brazil Canada Japan 
China and 
Hong Kong 

India 

Central 
and 

Caribbean 
Americas 

South and 
Other 

Americas 
East Asia 

Malaysia 
and 

Indonesia 

 
(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

Forests −64,772 −14,718 62,449 −25,352 −5,041 −1,692 −7,005 4,456 68,910 2,245 892 

Grasslands −92,616 −18,836 −219,140 −14,759 −144 −86,841 −3,539 −9,855 −183,326 −3,762 −2,973 

Cropland-
Grassland 

−1,788,463 0 −213,931 0 0 0 0 0 0 0 0 

Cropland 157,426 33,524 156,666 40,129 5,187 88,554 10,546 5,395 114,364 1,506 2,070 

            

Description 
Rest of 

South East 
Asia 

Rest of 
South Asia 

Russia 

Other East 
Europe and 

Rest of 
Former 
Soviet 
Union 

Rest of 
European 
Countries 

Middle 
Eastern 

and North 
Africa 

Sub 
Saharan 

Africa 

Oceania 
Countries 

Totals 
Internation

al Total 
(w/o USA) 

 
 

(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

 Forests −11,849 −3,098 87,330 −7,356 −240 167 −167148 −545 −82369 −17,595 

 Grasslands −2,527 −21,561 −145,276 −21,477 −188 −21975 −294,787 −17,308 −1,160,891 −1,068,274 

 Cropland-
Grassland 

0 0 0 0 0 0 0 0 −2,002,393 −213,931 

 Cropland 14,360 24,657 58,007 28,820 429 21779 461,846 17,891 1,243,153 1,085,730 
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2.6. International Farm Inputs and Fertilizer N2O 

Two country-specific data sets exist for evaluating trends in international farm inputs, especially 

nitrogen consumption: 

 International Fertilizer Industry Association, IFA Statistics19 

 Food and Agriculture Organization of the United Nations, FAOSTAT 

Both of these sources have data on consumption by country. Table 2-36 presents nitrogen consumption 

by region and Table 2-37 presents data for a sample country, Brazil. As indicated in the tables, N 

consumption increased from 2010 to 2013 in most countries. Table 2-38 presents data as provided by 

the Food and Agriculture Organization of the United Nations (FAO) for Brazil. As indicated in the tables, 

the level of detail and estimates differ between the data sources. 

The FAO report entitled World fertilizer trends and outlook to 2018 indicates that demand for total 

fertilizer nutrients will increase at 1.8 percent per year from 2014 to 2018 (FAO, 2015, p. ix). FAO 

indicates that nitrogen inputs will increase at an annual growth rate of 1.4 percent. 

Table 2-36: Nitrogen Consumption by Region by Calendar Year as Provided by International Fertilizer 
Industry Association (metric tons of N) 

Country Product 2010 2011 2012 2013 

Africa 

Ammonia dir. applic.     

Ammonium sulphate 121.6 99.7 69.0 104.6 

Urea 1,647.8 1,468.9 1,534.6 1,768.5 

Ammonium nitrate 562.7 594.9 575.5 545.4 

Calc.amm. nitrate 158.9 127.8 111.5 118.7 

Nitrogen solutions 0.1 0.1 0.1 0.2 

Other N straight     

Ammonium phosphate (N) 170.3 164.8 207.5 211.3 

Other NP (N)     

N K compound (N)   7.0 5.0 

N P K compound (N) 636.5 709.9 486.5 475.0 

                                                           
 

19
 The RFS2 RIA was based on use of data provided in a report by the International Fertilizer Industry Association. 

http://news.mongabay.com/2014/11/amazon-deforestation-in-brazil-drops-18-in-20132014/
http://news.mongabay.com/2014/11/amazon-deforestation-in-brazil-drops-18-in-20132014/
http://greet.es.anl.gov/publication-luc_ethanol
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Country Product 2010 2011 2012 2013 

Total N Straight 2,491.1 2,473.0 2,425.8 2,537.4 

Total N Compound 782.8 843.7 882.4 691.3 

Grand Total N 3,297.9 3,166.1 2,984.7 3,228.7 

Developed Countries 

Ammonia dir. applic. 3,647.9 4,192.1 4,189.8 4,147.0 

Ammonium sulphate 1,089.2 1,053.7 1,066.7 1,095.1 

Urea 7,456.8 7,879.0 8,245.7 8,440.6 

Ammonium nitrate 4,079.2 4,902.4 5,077.7 5,075.8 

Calc.amm. nitrate 2,752.7 2,830.4 2,868.8 2,777.1 

Nitrogen solutions 4,987.1 5,289.6 5,315.0 5,370.6 

Other N straight 893.3 945.3 967.7 959.0 

Ammonium phosphate (N) 1,340.5 1,399.6 1,473.3 1,494.9 

Other NP (N) 518.1 470.2 455.3 483.5 

N K compound (N) 49.0 145.5 153.8 154.6 

N P K compound (N) 3,808.8 3,212.0 3,193.6 3,343.8 

Total N Straight 24,807.4 27,035.9 27,796.6 27,865.2 

Total N Compound 5,716.4 5,146.3 5,127.0 5,476.8 

Grand Total N 31,276.8 32,325.6 32,993.1 33,342.0 

Developing Countries 

Ammonia dir. applic. 47.0 50.0 53.0 55.0 

Ammonium sulphate 2,323.4 2,349.7 2,507.9 2,365.2 

Urea 50,425.8 52,130.3 52,282.1 54,728.9 

Ammonium nitrate 1,526.3 1,741.0 1,669.5 1,657.1 

Calc.amm. nitrate 622.9 639.2 638.0 591.8 

Nitrogen solutions 198.5 196.9 181.6 216.6 

Other N straight 6,443.5 5,728.5 6,152.7 5,035.8 

Ammonium phosphate (N) 5,795.1 6,269.5 6,418.0 6,435.4 

Other NP (N) 1,400.9 1,822.4 1,410.4 1,515.1 

N K compound (N) 50.3 51.2 45.6 53.6 

N P K compound (N) 4,315.7 4,801.0 4,347.2 4,657.3 

Total N Straight 61,587.4 63,319.7 62,615.0 64,650.4 

Total N Compound 11,538.0 12,913.1 12,911.9 12,661.4 

Grand Total N 73,244.9 75,531.4 75,565.7 77,126.3 

East Asia 

Ammonia dir. applic.     

Ammonium sulphate 1,217.0 1,212.6 1,389.1 1,201.8 

Urea 26,544.2 27,606.9 27,867.5 28,986.7 

Ammonium nitrate 28.7 36.6 39.2 37.9 

Calc.amm. nitrate 85.0 90.4 95.7 100.4 

Nitrogen solutions    6.6 

Other N straight 6,411.0 5,681.0 6,111.2 5,005.5 

Ammonium phosphate (N) 2,663.3 3,103.6 3,275.4 3,487.0 

Other NP (N) 240.0 266.0 155.0 326.0 

N K compound (N) 21.0 20.0 20.0 20.0 

N P K compound (N) 3,100.5 3,534.0 3,449.0 3,699.3 

Total N Straight 34,285.9 34,927.5 34,460.1 35,338.9 

Total N Compound 6,024.8 6923.6 7,398.4 7,532.3 

Grand Total N 40,310.7 41,551.1 42,402.1 42,871.2 

Eastern Europe and Central Asia 

Ammonia dir. applic.  80.0 152.8 200.0 

Ammonium sulphate 164.4 141.5 165.6 174.1 

Urea 577.8 754.9 683.2 677.9 
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Country Product 2010 2011 2012 2013 

Ammonium nitrate 1 731.6 2 488.3 2 570.4 2 571.4 

Calc.amm. nitrate 10.4 55.6 66.5 55.5 

Nitrogen solutions 155.2 346.9 369.0 374.0 

Other N straight 5.0 53.3 44.0 5.0 

Ammonium phosphate (N) 109.9 113.1 131.7 128.9 

Other NP (N) 37.0 44.0 53.0 53.0 

N K compound (N)     

N P K compound (N) 387.0 446.0 397.0 461.0 

Total N Straight 2,644.4 3,916.8 4,189.7 4,057.9 

Total N Compound 533.9 606.1 493.7 642.9 

Grand Total N 3,828.3 4,523.6 4,628.2 4,700.8 

Latin America and the Caribbean 

Ammonia dir. applic. 47.0 50.0 53.0 55.0 

Ammonium sulphate 797.5 883.2 879.6 871.8 

Urea 3,822.2 4,260.4 4,252.4 4,639.1 

Ammonium nitrate 585.2 780.4 654.4 659.8 

Calc.amm. nitrate 71.7 95.4 127.1 100.9 

Nitrogen solutions 198.4 196.8 181.5 209.8 

Other N straight 39.1 42.9 48.7 36.7 

Ammonium phosphate (N) 555.6 766.1 858.7 901.3 

Other NP (N) 10.0 10.0 72.9 2.0 

N K compound (N) 46.6 47.3 42.2 50.8 

N P K compound (N) 461.0 524.2 478.9 521.8 

Total N Straight 5,561.1 6,295.1 6,235.0 6,573.1 

Total N Compound 1,073.2 1,347.6 1,455.0 1,475.9 

Grand Total N 6,729.8 7,408.4 7,509.1 7,863.5 

Source: IFI (2016). 

 

Table 2-37: Consumption by Country (Brazil in this Case) by Calendar Year as Provided by International 
Fertilizer Industry Association (metric ton of N) 

Country Product 2010 2011 2012 2013 

Brazil 

Ammonia dir. applic.     

Ammonium sulphate 370.6 447.7 416.7 393.9 

Urea 1,525.5 1,843.8 1,771.7 2,096.8 

Ammonium nitrate 406.9 573.3 493.2 508.9 

Calc.amm. nitrate 33.9 54.9 86.2 61.8 

Nitrogen solutions     

Other N straight     

Ammonium phosphate (N) 201.5 404.4 465.1 519.5 

Other NP (N)   70.9  

N K compound (N) 14.7 9.9  8.8 

N P K compound (N) 206.4 280.3 271.5 294.3 

Total N Straight 2,336.9 2,919.7 2,767.8 3,061.4 

Total N Compound 422.6 694.6 807.5 822.6 

Grand Total N 2,855.0 3,366.0 3,435.0 3,698.5 
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Table 2-38: Nitrogen Fertilizers Consumed (N Total Nutrients) in Brazil as Provided by Food and Agriculture 
Organization of the United Nations (metric ton of N) 

Country Product Year N total nutrients 

Brazil Nitrogen Fertilizers 

2002 1,834,733 

2003 2,407,558 

2004 2,281,346 

2005 2,072,214 

2006 2,192,739 

2007 2,948,784 

2008 2,498,138 

2009 3,145,930 

2010 3,668,652 

2011 4,418,196 

2012 4,251,169 

2013 3,953,800 

Source: FAO (2016). 

2.6.1. References: International Farm Inputs and Fertilizer N2O 

FAO, 2016. FAOSTAT. Food and Agriculture Organization of the United Nations. Accessed January 26, 
2016. http://faostat3.fao.org/download/R/RF/E 

FAO, 2015. World fertilizer trends and outlook to 2018, Food and Agriculture Organization of the United 
Nations, Rome, Italy. 

IFI (2016). International Fertilizer Industry Association, IFA Statistics, Available at 
<http://www.fertilizer.org/Statistics. 

2.7. International Rice Methane 

A review of the recent literature shows that global rice production and corresponding methane 

emissions increased between 1990 and 2012 with some fluctuation between years. Harvested acres 

increased from approximately 363 to 400 million acres and emissions increased from 465,000 to 

522,000 MMTCO2e during this period (USDA ERS, 2015; FAO, 2016a). The RFS2 RIA FAPRI data 

underestimates global harvested rice acreage, but has higher projections for future harvested acres in 

2023 than the FAO projections for 2030 and 2050 (FAO, 2016a). For example, both the RFS2 RIA FAPRI 

Control Case and the Reference Case have lower predicted harvested acres of rice in 2012 (384.32 

million acres for the Reference Case and 384.10 million acres for the Control Case) than were actually 

harvested (390.92 to 401.1 million acres depending on the source) (USDA ERS, 2015; FAO, 2016a). 

Emission factors used to develop the RFS2 RIA are based on the Tier 1 defaults from the 2006 IPCC 

Guidelines. A review of the recent Second National Communications (SNC) from the top five rice-

producing countries (China, India, Indonesia, Bangladesh, and Vietnam) indicates that all of the 

countries except for Bangladesh have created their own Tier 2 or Tier 3 emission factors for rice 

methane emissions. The RFS2 RIA emission factors cannot be directly compared to those in the SNCs as 

they are expressed in different units according to the Tier 2 or Tier 3 estimation equations. The total 

http://faostat3.fao.org/download/R/RF/E
http://www.fertilizer.org/Statistics


A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 75 January 12, 2017 

projected 2012 global rice methane emissions from the RFS2 RIA are approximately 3 percent of those 

from the FAO. The RFS2 RIA estimated 2012 emissions are 17,800 Gg CO2e for the Control Case and 

18,410 Gg CO2e for the Reference Case compared to 521,991 Gg CO2e from the FAO (FAO, 2016a).  

2.7.1. Background on Methane from Different Rice Production Systems and 
Global Rice Production 

As described for Domestic Rice Methane, the amount of methane produced by rice cultivation is 

influenced by multiple factors, including water management (EPA, 2015; Garthorne-Hardy, 2013; 

Hussain et al., 2015). While all rice produced in the United States is grown under continuously flooded, 

shallow water conditions, additional production methods or cropping regimes are used in other 

countries. The IPCC (2006) has developed emission factors for four categories of rice cropping regimes: 

 Irrigated 

 Rainfed lowland 

 Upland 

 Deepwater 

More than 90 percent of global rice is grown under irrigated or rainfed lowland rice fields (GRiSP, 2013). 

2.7.2. Global Rice Production Area 

According to the most recently published reports, between 1990 and 2014 the global estimated acreage 

of harvested rice generally increased with some fluctuations (USDA ERS, 2015; FAO, 2016a). In 1990, 363 

million acres of rice were harvested and in 2012 between 390 and 401 million acres were harvested, 

depending on the data source. Table 2-39 shows global harvested acres and projected harvested acres 

from multiple sources. 

Table 2-39: Global Harvested Rice Area (Millions of Acres) 

Year USDA Rice Yearbook
a
 FAO

b
 

RFS2 RIA FAPRI-CARD 
(Control Case)

c 
RFS2 RIA FAPRI-CARD  

(Reference Case)
c 

1990 363.17 363.15 - - 

1991 364.45 362.56 - - 

1992 361.97 364.18 - - 

1993 359.13 361.99 - - 

1994 364.10 363.96 - - 

1995 366.59 369.66 - - 

1996 370.87 371.40 - - 

1997 374.89 373.43 - - 

1998 378.36 374.86 - - 

1999 385.15 387.48 - - 

2000 376.70 380.70 - - 

2001 374.00 375.47 - - 
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Year USDA Rice Yearbook
a
 FAO

b
 

RFS2 RIA FAPRI-CARD 
(Control Case)

c 
RFS2 RIA FAPRI-CARD  

(Reference Case)
c 

2002 362.99 364.80 - - 

2003 368.97 366.98 - - 

2004 375.21 372.03 - - 

2005 380.56 382.99 378.26 378.26 

2006 382.02 384.46 380.21 380.21 

2007 382.27 383.12 381.39 381.39 

2008 390.67 395.36 385.10 385.10 

2009 384.89 390.76 385.70 385.71 

2010 390.89 398.31 385.46 385.51 

2011 396.05 402.29 385.12 385.25 

2012 390.92 401.10 384.10 384.32 

2013 397.55 - 383.88 383.56 

2014 394.48 - 384.26 383.96 

2015 - - 384.59 384.32 

2016 - - 384.73 384.47 

2017 - - 384.46 384.19 

2018 - - 384.34 384.25 

2019 - - 384.30 384.36 

2020 - - 385.06 385.09 

2021 - - 386.11 386.08 

2022 - - 385.56 385.48 

2023 - - 385.74 385.65 
a
 USDA ERS (2015). 

b
 FAO (2016a). 

c
 EPA (2010). 

Global rice harvest estimates from both the USDA Rice Yearbook and the FAO data show an overall 

increase in acreage from 1990 through 2014 with slight differences between them (USDA ERS, 2015; 

FAO, 2016a). For example, the USDA Rice Yearbook estimated more harvested acres than the FAO seven 

out of the 15 years between 1990 and 2004, and the FAO estimated higher acreage the remaining eight 

years. However, between 2005 through 2012 the FAO consistently estimates more acreage than the 

USDA Rice Yearbook and the difference between the estimates increases to 5 to 10 million acres. 

Between 2005 and 2014 (the only years for which we have overlapping data) the RFS2 RIA FAPRI-CARD 

data for both the Control Case and the Reference Case both underestimate the number of acres 

harvested for global rice production compared to the USDA Rice Yearbook and the FAO data, except for 

2009, where the RFS2 RIA acreage for both Cases is higher than the USDA Rice Yearbook. The difference 

between the RFS2 RIA FAPRI-CARD and the USDA and FAO acreage is greatest between 2010 and 2014 

where the RFS2 RIA FAPRI-CARD estimates are between 5 million and 15 million acres lower than the 

USDA and FAO data. Given that the RFS2 RIA consistently underestimates acres of harvested rice 

(especially between 2010 and 2014) the RFS2 RIA most likely underestimates global methane emissions 

from rice production for both cases (depending on the emission factors used). 
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While rice is produced in all regions around the world, the majority of rice is produced and consumed in 

Asia (GRiSP, 2013). The top five rice producing countries (in order of production) are: 

1. China 

2. India 

3. Indonesia 

4. Bangladesh 

5. Vietnam 

Combined these countries comprise approximately 65 percent of harvested rice acreage globally. Table 

2-40 below shows the comparison between FAO data for harvested acres for the top five rice producing 

countries from 1990 through 2012 and the RFS2 RIA FAPRI-CARD Control estimated harvested acres for 

the same countries between 2005 and 2023. 

Table 2-40: Top Five Rice Producing Countries (Millions of Acres Harvested) 

Year 

China, Mainland India Indonesia Bangladesh Vietnam 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

1990 81.71 - 105.48 - 25.95 - 25.79 - 14.93 - 

1991 80.53 - 105.39 - 25.41 - 25.32 - 15.57 - 

1992 79.30 - 103.23 - 27.44 - 25.15 - 16.00 - 

1993 75.01 - 105.12 - 27.21 - 24.48 - 16.21 - 

1994 74.56 - 105.80 - 26.52 - 24.51 - 16.31 - 

1995 75.97 - 105.76 - 28.27 - 24.59 - 16.72 - 

1996 77.61 - 107.25 - 28.59 - 25.21 - 17.31 - 

1997 78.49 - 107.42 - 27.53 - 25.36 - 17.54 - 

1998 77.13 - 110.71 - 28.99 - 25.01 - 18.19 - 

1999 77.31 - 111.59 - 29.56 - 26.47 - 18.91 - 

2000 74.04 - 110.49 - 29.14 - 26.69 - 18.94 - 

2001 71.20 - 110.95 - 28.42 - 26.34 - 18.52 - 

2002 69.69 - 101.75 - 28.47 - 26.62 - 18.54 - 

2003 65.50 - 105.25 - 28.36 - 26.50 - 18.42 - 

2004 70.13 - 103.56 - 29.46 - 25.32 - 18.40 - 

2005 71.28 71.28 107.89 107.25 29.26 29.16 26.01 27.43 18.11 18.07 

2006 72.39 71.51 108.26 108.73 29.13 29.41 26.14 27.68 18.10 17.80 

2007 71.46 71.46 108.51 108.73 30.02 29.41 26.13 27.18 17.81 18.32 

2008 72.26 72.16 112.53 109.96 30.42 29.41 27.87 28.12 18.29 18.01 

2009 73.21 72.73 103.58 110.63 31.84 29.84 28.06 28.33 18.38 18.42 

2010 73.82 70.78 105.92 111.22 32.75 29.70 28.49 28.21 18.51 18.62 

2011 74.27 70.87 108.65 111.51 32.62 29.80 28.49 28.07 18.92 18.82 

2012 74.47 69.15 104.80 111.81 33.23 29.85 28.23 28.07 19.16 18.93 

2013 - 68.44 - 112.18 - 29.85 - 28.11 - 19.06 

2014 - 68.58 - 112.14 - 30.00 - 28.27 - 19.12 

2015 - 67.82 - 112.65 - 30.07 - 28.44 - 19.14 

2016 - 67.48 - 113.04 - 30.11 - 28.76 - 19.17 
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Year 

China, Mainland India Indonesia Bangladesh Vietnam 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

FAO
a
 

RFS2 RIA 
(Control 
Case)

b
 

2017 - 67.29 - 113.17 - 30.23 - 29.01 - 19.19 

2018 - 67.01 - 113.65 - 30.17 - 29.22 - 19.22 

2019 - 66.84 - 113.90 - 30.23 - 29.51 - 19.25 

2020 - 66.56 - 114.09 - 30.25 - 29.79 - 19.28 

2021 - 66.22 - 114.33 - 30.33 - 30.14 - 19.32 

2022 - 65.80 - 114.59 - 30.30 - 30.42 - 19.37 

2023 - 65.53 - 114.92 - 30.33 - 30.76 - 19.45 
a
 FAO (2016a). 

b
 EPA (2010). 

The data show that the RFS2 RIA harvested acres projections are relatively close to the FAO estimates 

for the top five rice producing countries for the eight years with overlapping data (2005–2012). 

Specifically, the RFS2 RIA FAPRI-CARD underestimates harvested acres compared to FAO data between 

2008 and 2012 in China, in 2005 and 2008 in India, in 2005, and between 2007 and 2012 in Indonesia, 

between 2010 and 2012 in Bangladesh and in 2005, 2006, 2008, 2011, and 2012 in Vietnam. The other 

years for each country are either overestimates, or are the same values as the FAO data. The RFS2 RIA 

FAPRI-CARD data shows the largest difference with FAO data for India between 2009 and 2012 where 

the RFS2 RIA estimates are between 3 and 7 million acres higher than those of the FAO. 

2.7.3. Global Methane Emission Factors for Rice Production 

Global methane emissions from rice were estimated using similar assumptions to those used to 

calculate domestic rice emissions (see Domestic Rice Methane above). Based on the IPCC 2006 

methodology (see Equation 5.1 below), the total area of rice harvested in a given country was sub-

divided into IPCC cropping regimes, multiplied by the appropriate GHG emission factor, and the planting 

to harvest season length. Specifically, the FAPRI-CARD model was used to predict the area of rice 

harvested internationally, which was then multiplied by IPCC default emission factors for irrigated, 

rainfed lowland, upland, and deepwater rice based on the percentage of each cropping regime used in 

the country (IPCC, 2006). The rice cultivation season length data were based on data from the 

International Rice Research Institute (IRRI) (IRRI, 2008). Using this formula (see Equation 5.1 below), 

effective emission factors were developed for each country. 
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A review of current literature shows that all of the top five rice producing countries have submitted 

Second National Communications (SNCs) to the UNFCCC since 2010 (UNFCCC, 2016). A review of the 

SNCs shows that all of the countries (except Bangladesh) have developed country-specific rice methane 

emission factors. Table 2-41 below shows the country, SNC date, type of method used to estimate rice 

methane emissions, and reporting year 2000 methane emissions from rice in both methane and CO2e. 

Table 2-41: Methods Used to Estimate Rice Methane Emissions from Second National Communications of 
Top Five Rice Producing Countries 

Country Data Source Methane Estimation Method 

RY 2000 
Methane 
Emissions 
(Gg CH4) 

RY 2000 
Methane 
Emissions 
(Gg CO2e) 

China 
Second National 
Communication 
(2012)

a 

Estimated by dividing all harvested 
acres into four rice production 
systems and multiplying those acres 
by CH4MOD

20
 modeled emission 

factors (three categories) and using an 
empirically produced emission factor 
for the fourth category  

7,930.00 198,250.00 

India 
Second National 
Communication 
(2012)

b 

Estimated by dividing harvested acres 
in each state into rice production 
systems and multiplying by state level 
empirically developed seasonal 
emission factors  

3,540.98 88,524.25 

Indonesia 
Second National 
Communication 
(2012)

c 

Estimated using data on rice field area 
and planting intensity. Domestic 
scaling factors for soil types and water 
regimes were developed from 
empirical data. 

1,660.00 41,500.00 

                                                           
 

20
 CH4MOD is a biogeophysical model for simulating methane emissions from wetlands. 
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Country Data Source Methane Estimation Method 

RY 2000 
Methane 
Emissions 
(Gg CH4) 

RY 2000 
Methane 
Emissions 
(Gg CO2e) 

Bangladesh 
Second National 
Communication 
(2012)

d 

Estimated by dividing all harvested 
acres into different rice production 
systems and multiplying by a scaling 
factor (IPCC, 2006), correction factor, 
and seasonally integrated emission 
factor (used mean value from 
continuously flooded rice in India). 

380.75 9,446.65 

Vietnam 
Second National 
Communication 
(2010)

e
 

Estimated using harvested area 
divided into different production 
systems and multiplying by country-
specific methane emission factors. 

1,782.37 43,209.25 

a
 People’s Republic of China (2012). Note that the acreage and emission factors used to develop national rice 

methane emissions were not included in this National Communication. 
b
 Government of India (2012). 

c
 Republic of Indonesia (2012). Note that the acreage and emission factors used to develop national rice methane 

emissions were not included in this National Communication. 
d
 Bangladesh (2012). 

e
 Socialist Republic of Viet Nam 2010. Note that the emission factors used to develop national rice methane 

emissions were not included in this National Communication. 

 
Of the five top rice producing countries, only India and Bangladesh include their national emission 

factors and or scaling factors in their SNCs (UNFCCC, 2016). Table 2-42 below shows the IPCC 2006 

scaling factors, emission factors used in the Indian and Bangladesh Second National Communications 

and the emission factors used in the RFS2 RIA. Note that the factors cannot be directly compared as they 

are expressed in different units. 

Table 2-42: Global Rice Methane Emission Factors 

Rice Conditions 
IPCC 2006 

(Disaggregated Case 
Scaling Factor)

a 

India NC 2000 
(kg 

CH4/ha/season)
b 

Bangladesh 
NC 2000 (kg 
CH4/ha/yr)

c 

RFS2 RIA 
Emission 

Factors (kg 
CH4/ha/day)

d 

Irrigated 

Continuously 
flooded 

1.00 162.00 

52.44 1.24 
Single aeration 0.60 66.00 

Multiple aeration 0.52 18.00 

Rain-fed 

Regular 0.28 - 28.00 0.44 

Drought-prone 0.25 66.00 25.00 - 

Flood-prone - 190.00 11.46 - 

Deep Water Regular 0.31 190.00 - 0.49 

Upland Regular - - 0.00 0.00 
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a
 IPCC (2006). Table 5.12 Default CH4 emission scaling factors for water regimes during the cultivation period 

relative to continuously flooded fields. 
b
 Government of India (2012). 

c
 Bangladesh (2012). 

d
 EPA (2009a). 

2.7.4. Annual Methane Emissions from Global Rice Production 

According to the most recently published reports annual global methane emissions from rice production 

increased from 1990 through 2013 with some fluctuations. Global emissions were 465,640.31 Gg CO2e 

in 1990 and 521,991.07 Gg CO2e in 2012 (FAO, 2016a). The only RFS2 RIA methane emissions data for 

the Control Case and the Reference Case available were for 2012 (EPA, 2009b). Table 2-43 shows FAO 

global methane emissions from 1990–2012 and FAO estimates for global methane emissions from rice in 

2030 and 2050, and the RFS2 RIA FAPRI-CARD data for 2012. 

Table 2-43: Global Emissions from Rice Production (Gg CO2e) 

Year 
Emissions from Rice Cultivation 

(FAO)
a 

RFS2 RIA Methane Emissions 
Control Case

b 
RFS2 RIA Methane Emissions 

Reference Case
b
 

1990 465,640.31 - - 

1991 464,265.84 - - 

1992 467,291.86 - - 

1993 463,266.76 - - 

1994 467,416.84 - - 

1995 476,108.88 - - 

1996 481,444.47 - - 

1997 483,732.16 - - 

1998 481,696.28 - - 

1999 500,543.32 - - 

2000 490,302.96 - - 

2001 483,417.15 - - 

2002 472,564.07 - - 

2003 471,980.61 - - 

2004 481,405.88 - - 

2005 492,539.39 - - 

2006 495,469.85 - - 

2007 495,065.75 - - 

2008 509,146.22 - - 

2009 508,672.98 - - 

2010 517,627.84 - - 

2011 520,008.28 - - 

2012 521,991.07 17,800.00 18,410.00 

2013 - - - 
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a
 FAO (2016a).  

b
 EPA (2009b). 

The data show that similar to global harvested rice acreage, the FAO emissions21 increase from 

465,640.31 Gg CO2e in 1990 to 521,991.07 Gg CO2e in 2012 (FAO, 2016a). The RFS2 RIA values for 2012 

are approximately 3 percent of the FAO values. 

2.7.5. Conclusions 

A review of the current literature shows that global rice production and corresponding methane 

emissions have increased between 1990 and 2012, with some fluctuation between years. The RFS2 RIA 

FASOM data underestimates global harvested rice acreage. Emission factors used to develop the RFS2 

RIA are based on Tier 1 IPCC 2006 guidelines. A review of the recent Second National Communications 

(SNC) from the top 5 rice producing countries shows that most of the countries have now created their 

own Tier 2 or Tier 3 country or region specific methane emission factors for rice. The RFS2 RIA emission 

factors cannot be directly compared to the SNCs as they are expressed in different units. The total 

projected 2012 global rice methane emissions from the RFS2 RIA are approximately three percent of 

those  from the FAO. 
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2.8. Fuel and Feedstock Transport 

EPA’s RFS2 RIA estimated that fuel and feedstock transportation accounted for less than 5 percent of 

total life-cycle GHG emissions from corn ethanol (about 3.5 g CO2e/MJ). This estimation used GREET 

emission factors for rail, barge and truck. In 2015, GREET researchers substantially expanded the 

capabilities of the model’s truck transportation LCA. This expansion included five varieties of diesel and 

gasoline freight vehicles. Beyond traditional fossil fuel vehicles, the update includes alternative fuel 

vehicles for hybrid and hydraulic technologies: biodiesel, dimethyl ether, renewable diesel, compressed 

natural gas, liquefied natural gas, liquefied petroleum gases, ethanol, and electricity (Cai et al., 2015). 

Outside of GREET, researchers used economic input-output LCA (EIO-LCA) methodologies to determine 

new life-cycle freight emission factors for rail, barge, truck, and air (Nealer et al., 2012). The 

methodology determined these emission factors by analyzing industry inputs and outputs from over 400 

http://www.southasia.ox.ac.uk/sites/sias/files/documents/GHG%20emissions%20from%20rice%20-%20%20working%20paper.pdf
http://www.southasia.ox.ac.uk/sites/sias/files/documents/GHG%20emissions%20from%20rice%20-%20%20working%20paper.pdf
http://unfccc.int/resource/docs/natc/indnc2.pdf
http://www.ipcc-nggip.iges.or.jp/public/2006gl/
http://www.irri.org/
http://unfccc.int/resource/docs/natc/chnnc2e.pdf
http://unfccc.int/resource/docs/natc/indonc2.pdf
http://unfccc.int/national_reports/non-annex_i_natcom/submitted_natcom/items/653.php
http://www.ers.usda.gov/data-products/rice-yearbook-2015.aspx
http://www.ers.usda.gov/data-products/rice-yearbook-2015.aspx


A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 84 January 12, 2017 

economic sectors. The study also assessed transportation through fossil fuel pipelines. While there is 

little pipeline infrastructure for transportation of biofuels, recent research projected that existing fossil 

fuel pipelines could be retrofitted to transport biofuels. Depending on the electricity mix used for 

pumping, the researchers found that significant GHG emissions savings exist for transporting biofuels 

through pipelines (Strogen et al. 2013). This potential of pipeline transportation could be taken into 

account in future corn ethanol LCAs. 

2.8.1. References: Fuel and Feedstock Transport 
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2.9. Fuel Production 

Recent LCA literature has shown that corn ethanol production accounts for over 40 percent of life-cycle 

GHG emissions (Wang et al., 2012). Technological advancements in production, introduction of new co-

products, and refinement of LCA methodologies project significant savings from the GHG intensity 

previously determined by EPA (2010). 

Table 2-44 shows the GHG emissions from corn ethanol production facilities reported under the EPA 

Greenhouse Gas Reporting Program (GHGRP) and corn ethanol production from the U.S. Energy 

Information Administration (EIA). Ethanol production facilities are required to report emissions under 

the GHGRP if they meet the reporting threshold of 25,000 metric tons of CO2 equivalent per year for all 

emissions sources covered in program (40 CFR Part 98). Applicable Subparts are likely to include Subpart 

C (stationary combustion), Subpart HH (municipal solid waste landfills), and Subpart II (wastewater 

treatment).Emissions are primarily from fuel combustion on-site from both fossil and biogenic fuel 

sources. The GHGRP and EIA data show that the total national GHG intensity has declined by 4 percent 

between 2010 and 2014. 

Table 2-44: GHG Intensity for Corn Ethanol Production Facilities 

Datum 
Year 

2010 2011 2012 2013 2014 

Number of Facilities
a
 161 163 166 170 175 

CO2 Emissions 
(metric tons) 

17,600,254 18,151,600 17,182,627 17,063,166 18,265,090 

CH4 Emissions 
(metric tons) 

17,450 14,689 17,771 11,866 20,801 
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In addition, corn ethanol yields continue to improve. Figure 2-12 shows that as the corn ethanol 

production has grown, the industry has become more efficient, using fewer bushels of corn to produce a 

gallon of ethanol. Several factors contributed to the yield increases from a bushel of corn. Increased 

scale has allowed producers to incorporate better process technology, such as finer grinding of corn to 

increase starch conversion and improved temperature control of fermentation to optimize yeast 

productivity. The growth of the corn ethanol industry also enabled the development of better enzymes 

and yeast strains for improved output per bushel of corn.22 

 

Figure 2-12: Ethanol Industry Corn Utilization and Average Yield, 1982–2014 

The GREET model used primarily in the EPA’s assessment has subsequently been updated to include 

new co-products, production pathways, and co-product allocation methods. Argonne researchers 

estimated current corn ethanol production using natural gas contributed 30 g CO2e/MJ to the fuel’s 

                                                           
 

22
 See EIA’s Today in Energy, May 13, 2015. Available online at: http://www.eia.gov/todayinenergy/detail.cfm?id=21212. 

N2O Emissions 
(metric tons) 

80,960 20,182 159,205 17,166 27,561 

Total Emissions 
(metric tons CO2e) 

17,698,648 18,186,453 17,359,574 17,092,175 18,313,426 

Ethanol Production 
(million gallons) 

13,298 13,929 13,218 13,293 14,313 

GHG Intensity 
(metric tons CO2e per million gallon) 

1,331 1,306 1,313 1,286 1,279 

Change from 2010 GHG Intensity 
(%) 

0% −2% −1% −3% −4% 
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well-to-wheels GHG intensity (Wang et al., 2012). This estimate is similar to the value projected for 2022 

by the EPA (2010) report. The Argonne report acknowledged that major energy efficiency improvements 

could be made to the system if corn and corn stover processes were combined, utilizing combined heat 

and power (CHP) from the corn stover process. 

The same research team produced a refined LCA of corn ethanol that detailed the benefits of dried 

distillers grain (DGS) and corn oil recovery in ethanol production (Wang et al., 2015). The study applied 

four different allocation techniques in determining the variations in effects of the co-products on the 

final GHG intensity: marginal energy allocation, hybrid market-value allocation, process-level allocation, 

and soy biodiesel displacement. This methodology estimated the life-cycle GHG intensity of corn ethanol 

production to range between 15–20 g CO2e/MJ, a 33–50 percent reduction from the EPA report, 

depending on the co-product handling method used. For the marginal and displacement methods, 

ethanol production values are similar to Wang et al. 2012, but a DGS displacement credit reduces the 

life-cycle emissions. The hybrid-market and process-level allocation methods do not use a displacement 

credit, and allocate a share of the production burden to the DGS co-product based on the specific 

method. 

Boland and Unnasch (2014) projected significant reductions in life-cycle corn ethanol GHG intensity, 

using the EPA (2010) report as a baseline. This study assessed a corn and corn stover ethanol production 

pathway with 10 variations in fuel and co-products. The dry mill production variations using natural gas 

ranged from 20–35 g CO2e/MJ. Substituting biomass in place of natural gas resulted in 10 g CO2e/MJ, a 

67 percent reduction from the EPA report. The study projected these GHG intensities to decline by 8–20 

percent from 2012–2022 due to efficiency improvements. 

2.9.1. References: Fuel Production 

Boland. S. and Unnasch. S. (2014) Carbon Intensity of Marginal Petroleum and Corn Ethanol Fuels. Life 
Cycle Associates Report LCA.6075.83.2014, Prepared for Renewable Fuels Association. 

Wang, M., Han, J., Dunn, J. B., Cai, H., & Elgowainy, A. (2012). Well-to-wheels energy use and 
greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US 
use. Environmental Research Letters, 7(4), 045905. 

Wang, Z., Dunn, J. B., Han, J., & Wang, M. Q. (2015). Influence of corn oil recovery on life-cycle 
greenhouse gas emissions of corn ethanol and corn oil biodiesel. Biotechnology for 
biofuels, 8(1), 1. 

2.10. Tailpipe 

About 19.64 pounds (8.91 kg) of carbon dioxide (CO2) are produced from burning a gallon of gasoline 

that does not contain ethanol. Most of the retail gasoline now sold in the United States contains about 

10 percent fuel ethanol (or E10) by volume. Burning a gallon of E10 produces about 17.68 pounds (8.02 

kg) of CO2 that is emitted from the fossil fuel content. If the CO2 emissions from ethanol combustion are 
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considered, then about 18.95 pounds (8.60 kg) of CO2 are produced when a gallon of E10 is combusted. 

About 12.73 pounds (5.77 kg) of CO2 are produced when a gallon of pure ethanol is combusted.23 

The EPA (2010) report used the EPA’s motor vehicle emission simulator (MOVES) 2009 model to 

estimate CH4 and N2O emissions from gasoline and diesel vehicles. The MOVES model derived emission 

factors from federal GHG emission testing. The EPA has updated MOVES twice since the 2009 model in 

2010 and 2014. The 2010 update included multiple improvements for gasoline and diesel GHG emission 

rates for the following criteria (EPA, 2014): 

 Corporate Average Fuel Economy (CAFE) standards and projections for light duty vehicles from 

2008–2016 

 Updated and projected energy usage rates for light and heavy-duty vehicles 

 Improved methane emission calculations based on total fuel hydrocarbons 

The 2014 model further updated the gasoline/diesel emission factors to reflect changes in fuel economy 

data. While these updates present opportunities for improvements in accuracy for future LCA models, it 

should be noted that tailpipe emissions only represent about 1 percent of total life-cycle GHG emissions 

from corn ethanol (EPA, 2010a). 

2.10.1. References: Tailpipe 

EPA, (2014). Greenhouse Gas and Energy Consumption Rates for On-road Vehicles: Updates for 
MOVES2014. http://www3.epa.gov/otaq/models/moves/documents/420r15003.pdf 

 

                                                           
 

23
 See How much carbon dioxide is produced by burning gasoline and diesel fuel? Available online at: 
http://www.eia.gov/tools/faqs/faq.cfm?id=307&t=10. 

http://www3.epa.gov/otaq/models/moves/documents/420r15003.pdf
http://www.eia.gov/tools/faqs/faq.cfm?id=307&t=10
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3. Current GHG Emission Values for Each Emissions Source 
Category 
This chapter presents an assessment of the GHG footprint of corn-based ethanol today. For each 

emission source category, we include a summary of the methods, data sources, and emissions 

projection developed in the EPA RIA, describe the methods used here to quantify the contribution to 

corn ethanol’s current GHG profile attributable to that category, and quantify that contribution. 

The chapter is organized by emission category,specifically: 

 Domestic farm inputs and fertilizer N2O 

 Domestic land-use change 

 Domestic rice methane 

 Domestic livestock 

 International livestock 

 International land-use change 

 International farm inputs and fertilizer N2O 

 International rice methane 

 Fuel and feedstock transport 

 Fuel production 

 Tailpipe 

 Result of combining the current GHG emission category values 

3.1. Domestic Farm Inputs and Fertilizer N2O 

The domestic farm inputs evaluated in the EPA RIA include fertilizers, herbicides, pesticides, and on-site 

fuel use. The fertilizers evaluated included nitrogen, phosphorous, potash, and lime. Representative 

herbicides and pesticides were also included. On-site fuels included diesel, gasoline, natural gas, and 

electricity. EPA also quantified N2O emissions due to application of synthetic fertilizers. 

3.1.1. EPA RIA Methodology and Data Sources 

The EPA RIA used the domestic agricultural inputs for fertilizer, pesticides, and energy use from the 

Forestry and Agriculture Sector Optimization Model (FASOM) output (Adams et al., 2005). 24 The amount 

of each input was determined based on the inputs required for the specified crops and the changes in 

demand for those crops based on increased biofuel production. FASOM constructed crop budgets for 11 

                                                           
 

24
 The Forestry and Agriculture Sector Optimization Model is a dynamic, partial equilibrium, sectoral model used to simulate 
potential future impacts of polices on land use, GHG fluxes, and commodity markets within the agricultural and forestry 
sectors. It has collaborators at Oregon State, Research Triangle Institute, Electric Power Research Institute, EPA, USDA, and 
USDA-Forest Service. 
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market regions, which varied by crop, management practice, and region. Within these crop budgets, 

data on crop yield, fertilizer, pesticides, and fuels used were included. These budgets did not reflect 

input or yield changes that may result in altered crop rotation patterns or the use of marginal land. The 

energy use in FASOM represented the fuels used for grain drying. It was based on the assumptions that 

17.5 gallons of propane and 9 kWh of electricity were required to remove 10 percentage points of 

moisture from 100 bushels of grain. The total energy use per acre was determined by multiplying the 

energy use per percentage point per yield unit for each crop that is dried (i.e., bushel of grain) by the 

total number of percentage points to be removed and the yield per acre. 

The emission factors used for the fertilizers and pesticides were from the Greenhouse Gas, Regulated 

Emissions, and Energy use in Transportation (GREET) spreadsheet analysis tool developed by Argonne 

National Laboratories. GREET version 1.8c was primarily used. The electricity emission factors represent 

average U.S. grid electricity production and were also based on GREET (EPA, 2009). 

The N2O emissions were based on different N-input sources including fertilizer application, nitrogen-

fixing crops such as soybeans, and crop residues. The N2O emissions from manure management systems 

(and manure application) are addressed in the Domestic Livestock section. To model the domestic 

impacts of N2O emissions from fertilizer application, Colorado State University’s CENTURY and DAYCENT 

models were used. 25 The CENTURY and DAYCENT simulate plant-soil systems and simulates plant 

production, soil carbon dynamics, soil nutrient dynamics and soil water and temperature. These 

simulations account for all nitrogen inputs into the soil and provide regression equations with the 

coefficients accounting for N2O estimates by region, crop type, irrigation status, and crop residue 

treatment. The regression equations were then used to calculate the N2O emission per acre. FASOM was 

used to evaluate the N2O emissions from crop residues and residue burning using IPCC guidelines and 

assumed that 1 percent of nitrogen (N) residing in crop residues that remain on the field is emitted as 

N2O emissions, following IPCC guidelines. These crop residues emissions estimates consider: 

 N content by crop based on yield, 

 Residue-to-crop ratio, 

 Percent dry matter, 

 Percentage of rice area burned in each state, 

 Burn and combustion efficiency, and 

 Percent of residue burned by crop. 

                                                           
 

25
 Colorado State’s CENTURY and DAYCENT models are related models focused on nutrient cycling. The CENTURY model is a 
general model of plant-soil nutrient cycling which is being used to simulate carbon and nutrient dynamics for different types 
of ecosystems including grasslands, agricultural lands, forests, and savannas. The DAYCENT model simulates carbon and 
nitrogen fluxes through the ecosystem at daily time-step intervals. 
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Field burning of crop residues is not considered a net source of CO2, because the carbon released to the 

atmosphere as CO2 during burning is assumed to be reabsorbed during the next growing season. Field 

burning of crop residues, however, also emits N2O and CH4, which are considered a net source of GHG 

emissions. 

3.1.2. EPA RIA Results 

National-level input data for domestic farm inputs based on the FASOM output are shown in Table 3-1. 

The RIA provides the domestic inputs in units per MMBtu as they are attributed to the corn ethanol 

production. 

Table 3-1: Summary of Domestic Agricultural Inputs for Corn Ethanol, 2022 (Source: Table 2.4-5 from 
EPA RIA) 

Input 
Units per 
MMBtu 

Fuel-Specific Scenario Control Scenario Difference Percent Change 

Total N Pounds 136.6 138.8 2.1 1.5% 

Total P2O5 Pounds 31.2 31.7 0.5 1.5% 

Total K2O Pounds 38.8 39.5 0.7 1.9% 

Total Lime Pounds 104.2 104.7 0.5 0.5% 

Herbicide Pounds 1.9 2.0 0.0 2.2% 

Pesticide Pounds 0.4 0.4 0.0 2.8% 

Total Diesel Fuel Gallon 14.3 14.2 −0.1 −0.5% 

Total Gasoline Fuel Gallon 1.7 1.7 0.0 −0.9% 

Total Electricity kWh 1.0 1.0 0.0 0.3% 

Total Natural Gas Btu 248,002 234,746 −13,257 −5.6% 

Source: FASOM output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Inputs_Ag” tab. 

 

These values were combined with the upstream emission factors from GREET to calculate the GHG 

emissions from the production of fertilizer, herbicides, pesticides, and fuels. The GHG emission factors 

for the domestic farm inputs can be found in Table 3-3. Upstream emissions for diesel, gasoline, 

electricity, and natural gas are discussed in the Fuel Production section. 

The FASOM output for the N2O emissions is shown in Table 3-2. In the calculation spreadsheets, the 

analysis in some cases was only performed for the volume difference between the corn-ethanol scenario 

and the control case scenario. The negative values below represent negative emissions. 
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Table 3-2: Relative Change in N2O Emissions (DAYCENT/CENTURY) 

Emission Category Units 

2012 2017 2022 

Fuel-
Specific 

Control 
Case 

Difference Difference Difference 

N Fertilizer Application Practices 
under Managed Soil 

000 Tons 
CO2e 

N/P N/P 363.5 574.8 442 

Emissions from N Fixing Crops 
000 Tons 

CO2e 
N/P N/P −823.5 −1,330 −1,157 

Emissions from Crop Residue 
Retention 

000 Tons 
CO2e 

N/P N/P −152.8 −180.1 −218 

Domestic Fertilizer Use 
000 Tons 

CO2e 
73,282 73,565 −612.7 −935.1 −933 

Source: FASOM output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Inputs_Ag” tab. 
N/P = Not Provided. 

 

The activity data from Table 3-1 was then multiplied by the emission factors shown in Table 3-3 to 

calculate the total emissions for domestic farm inputs. 

Table 3-3: Emission Factors for Domestic Farm Inputs and Fertilizer N2O 
(Units: Emissions—grams per ton of nutrient; Energy Use—MMBtu per ton of nutrient) 

 

Average 
Nitrogen 
Fertilizer 

Phosphate 
(P2O5) 

Fertilizer 

Potash (K2O) 
Fertilizer 

Lime (CaCO3) 
Fertilizer 

Herbicide Pesticide 

CO 2,726 1,091 214.8 244.2 6,582 10,091 

NOx 2,274 6,206 1,103.4 781.632 23,188 29,312 

PM10 436.1 1,468 137.6 544.366 11,269 12,874 

PM2.5 230.1 901.2 57.1 181.8 5,145 6,113 

SOx 1,007 54,455 423.17 904.6 21,979 17,007 

CH4 2,632 1,610.3 888.8 830.9 27,147 32,196 

N2O 1,481 16.68 9.116 7.762 216.3 281.7 

CO2 2,211,527 894,413 602,485 949,543 18,767,361 21,967,813 

CO2e 2,726,048 933,401 623,976 969,398 19,404,522 22,731,268 

Coal 
Energy 

2.56 2.52 2.73 2.72 50.66 62.68 

Natural 
Gas Energy 

36.92 5.54 2.14 2.11 63.76 76.01 

Petroleum 
Energy 

1.67 3.49 2.23 1.63 114.89 134.39 
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Source: GREET output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Emission Factors” tab. 

 

In the RIA, this category of emissions is projected to be 10,313 g CO2e/MMBtu for domestic agricultural 

inputs by 2022 (the emission intensity was not reported for 2014). 

Table 3-4: Domestic Agricultural Input Emissions including Ethanol Co-Product Credit 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 10,313 

3.1.3. ICF Methodology and Data Sources 

ICF analyzed the GHG emissions impact of RFS2-related corn ethanol production on domestic 

agricultural inputs—specifically, nitrogen (N) fertilizer, phosphorus (P) fertilizer, potassium (K) fertilizer, 

herbicides, insecticides, and fungicides—and fuel consumption. Upstream emissions factors are included 

for all chemical applications and the direct and indirect N2O emissions from nitrogen fertilizer 

applications are evaluated. The upstream and on-site diesel fuel impacts are also included in the 

analysis. 

For chemical application rates (calculated based on the percent of acres applying a particular chemical 

and pounds applied per acre), ICF utilized the most recent Agricultural Resource Management Survey 

(ARMS) data for corn, which is for 2010 and is provided separately for the ten USDA Farm Production 

Regions (USDA ERS 2016). ICF utilized the national average fungicide application rates for all regions 

except for the Corn Belt region, due to the lack of data for these regions. We assumed that the diesel 

fuel use is 7.74 gallons per corn-acre under conventional tillage, based on 2015 farm budget worksheets 

(UT 2015). 

To calculate the effective chemical application rates, ICF multiplied the application rates in each region 

(pounds per acre) by the percent of acres in each region that apply each fertilizer or pesticide (USDA ERS 

2016).26 Table 3-5 present the results of this analysis.  ARMS data did not report corn acres in the Delta 

and Pacific regions, hence they these regions are excluded from Table 3-5 (USDA ERS 2016). 

                                                           
 

26
 For example, 95.2 percent of acres in Appalachia apply nitrogen and in that region, the average application rate is 154.1 

lbs/acre. By multiplying the adoption rate by the application rate, ICF calculated the effective nitrogen application rate across 
the region (146.7 lbs/acre). 
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Table 3-5: Effective Chemical Application Rates (Pounds per Acre) Using 2010 ARMS Data 

Chemical Appalachia 
Corn 
Belt 

Lake 
States 

Mountain Northeast 
Northern 

Plains 
Southeast 

Southern 
Plains 

Weighted 
Average 

for United 
States 

Nitrogen 146.7 152.6 109.7 127.7 75.1 138.6 160.6 130.3 138.3 

Phosphorus 66.0 61.6 35.8 15.4 23.4 34.7 50.9 26.8 47.7 

Potassium 81.2 72.8 47.9 0.0 23.4 9.8 77.0 5.3 48.4 

Herbicide 2.94 2.13 1.63 2.37 2.92 2.22 2.14 1.63 2.10 

Insecticide 0.016 0.015 0.012 0.058 0.022 0.018 0.018 0.056 0.017 

Fungicide 0.009 0.014 0.009 0.009 0.009 0.009 0.009 0.009 0.011 

 

ICF used the RIA’s projected number of additional bushels of corn in the control scenario (i.e., 

compliance with the RFS2 regulation), compared to the reference scenario (i.e., no RFS2 is enacted) 

(773,956,000 bushels in 2017, which we assume is also the marginal increase for 2014) to determine the 

additional number of corn acres that can be attributed to the RFS2 rule.  This projected change in 

bushels was divided by the most recent USDA corn yield data (168.4 bushels per acre in 2015) (USDA 

NASS, 2016). The resultant additional acres of corn are presented in Table 3-6, were then allocated by 

region based on the ARMS corn acreage data by region (USDA ERS, 2016). The total projected change in 

acreage under ICF’s analysis is 4.9 million acres in 2017 and 3.4 million acres in 2022. For comparison, 

the RIA projected an additional 4.9 million acres in 2017 and 3.6 million acres in 2022. These acreage 

increases are less than 6 percent of the total acreage. 

Table 3-6: Calculated Changes in Corn Production in the ICF: 2014 Current Conditions Control Scenario 
(Acres) 

Year Appalachia Corn Belt 
Lake 

States 
Mountain Northeast 

Northern 
Plains 

Southeast 
Southern 

Plains 
Total 
Acres 

2014 138,120 2,359,057 855,620 81,279 146,676 1,255,923 18,338 140,572 4,995,585 

2017 135,879 2,320,783 841,738 79,960 144,296 1,235,546 18,040 138,291 4,914,536 

2022 95,090 1,624,126 589,064 55,957 100,981 864,657 12,625 96,778 3,439,282 

 

ICF multiplied the acreages in Table 3-6 by the individual fertilizer and fuel emission factors. Life-cycle 

emission factors for diesel fuel (on-site and upstream), fertilizers (N, P, and K) and insecticide were 

based on Argonne National Laboratory’s GREET 2015 model (Argonne National Laboratory 2015). 

Emission factors for herbicides and fungicides are from ecoinvent v2 found in SimaPro. These emission 

factors are cradle to gate and include the emissions from the upstream production of agricultural 

chemicals (Weidema et al. 2013), but do not include emissions after the farm “gate” from application. 
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The direct and indirect N2O emissions from N-fertilizer applications (on-site and downstream) are based 

on IPCC guidance for rates for each kilogram of N fertilizer applied (IPCC, 2006). IPCC provides N 

mineralized from mineral soil as a result of loss of soil carbon, as well as volatilization and leaching (as 

N2O-N). The factors of 168.4 bushels of corn per acre (USDA NASS, 2016) and 2.8 gallons of ethanol per 

bushel of corn from (GREET, 2015) were used to convert emissions per acre to emissions per MMBtu of 

ethanol. 

Table 3-7: N2O from Fertilizer, Fertilizer and Pesticides, and Fuel Use Emissions Impacts 

 
Emissions Impacts 

(kg CO2e/Acre) 
Emissions Impacts 
(kg CO2e/Bushel) 

Emissions Impacts 
(kg CO2e/Gallon 

Ethanol) 

Emissions Impacts 
(g CO2e/MMBtu) 

N2O from Fertilizer 389.26 2.31 0.83 10,815 

Fertilizer and Pesticides 301.67 1.79 0.64 8,382 

Fuel Use 94.19 0.56 0.20 2,617 

Total  785.12 4.66 1.67 21,814 

Note: 1 metric ton = 1,000 kg = 1,000,000 g 

3.1.4. Ethanol Co-Product Credit 

Co-products of the ethanol production processes include distillers grains and solubles (DGS, from dry 

mill ethanol processing), and corn gluten meal and corn gluten feed (CGM and CGF, from wet milling 

ethanol process). These products are sold into the animal feed market. The lifecycle analysis (LCA) 

standard approach for handling these animal feed co-products (see Argonne’s GREET model, the 

California Air Resources Board, and EPA) is to credit the co-product via the displacement methodology. 

For the displacement methodology, all of the energy and emissions for farming, fertilizer, feedstock 

transport, and ethanol production are allocated to the primary product from ethanol production (i.e., 

the ethanol), and the ethanol pathway is credited for co-product displacing animal feed. 

ICF utilized the GREET 2015 assumptions for the breakdown of the animal feed components, including 

corn, soybean meal, urea, and soybean oil, that are being displaced. Table 3-8 indicates that feed 

displacement values vary by ethanol refining process and displaced animal feed. 

Table 3-8: Ethanol Production Market Breakdown and Animal Feed Displacement by Ethanol Plant Type 

Ethanol Plant Type Ethanol Market Share 

Total Displaced Animal Feed 
(Pounds per Gallon of Ethanol) 

Corn 
Soybean 

Meal 
Urea Soy Oil 

Dry Mill w/o Corn Oil 
Extraction 

17.7% 4.402 1.731 0.128 - 

Dry Mill w/ Corn Oil 70.9% 4.210 1.656 0.122 - 
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Ethanol Plant Type Ethanol Market Share 
Total Displaced Animal Feed 

(Pounds per Gallon of Ethanol) 

Extraction 

Wet Mill 11.4% 7.149 - 0.109 0.980 

 

ICF modified the GREET default values for corn farming farm inputs and fertilizer N2O to incorporate the 

values presented earlier in this section and quantify the displaced emissions from the use of DGS as 

animal feed. Utilizing the AR4 GWP for CH4 and N2O, Table 3-9 shows the resulting DGS credit per gallon 

of ethanol and per MMBtu. 

Table 3-9: Ethanol Co-Product Credit by Ethanol Plant Type 

Ethanol Plant Type Ethanol Market Share 
Co-Product Credit 

(g CO2e/Gallon Ethanol) 
Co-Product Credit 
(g CO2e/MMBtu) 

Dry Mill w/o Corn Oil 
Extraction 

17.7% -991 -12,981 

Dry Mill w/ Corn Oil 
Extraction 

70.9% -948 -12,417 

Wet Mill 11.4% -1,103 -14,449 

Weighted Average 100% -973 -12,749 

 

3.1.5. ICF Results 

The combined domestic agricultural inputs emissions related to the RFS2 rule in 2014 (i.e., under current 

conditions) is approximately 9,065 g CO2e/MMBtu. This estimate is the sum of the ethanol co-product 

credit in Table 3-9 (−12,749 g CO2e/MMBtu) and the domestic inputs emissions impact in Table 3-7 

(+21,814 g CO2e/MMBtu). The difference in emissions from the EPA RIA is small and is attributed 

primarily to the lower GWP value for N2O in AR4 and the slightly higher chemical application rates used 

in our analysis. 

Table 3-10: Domestic Agricultural Input Emissions including Ethanol Co-Product Credit 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 9,065 

 

3.1.6. Limitations, Uncertainty, and Knowledge Gaps 

ICF allocated the change in acres by region based on the ARMS corn acreage data by region (USDA ERS 

2016) in order to apply region-specific fertilizer and insecticide application rates.  This methodology 

assumes that the increased demand for corn ethanol affects all regions equally.  
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To model the energy associated with tillage and chemical application, ICF used a dataset that is specific 

to Tennessee, however recognizes that other datasets, such as the ARMS data, could be used. The 

University of Tennessee dataset provides the necessary granularity in energy used by activity. ICF 

recognizes that crop budgets are based on recommendations. 

Finally, this analysis did not include the emissions impacts from the current use of nitrogen inhibitors 

and other advanced farming and agricultural practices. Potential emissions reductions from adoption of 

these practices are considered in the projection scenarios developed in Chapter 4. 

3.1.7. References: Domestic Farm Inputs and Fertilizer N2O 

Adams, D., Alig, R., McCarl, B. A., & Murray, B. C. (2005). FASOMGHG Conceptual Structure and 
Specification: Documentation. Retrieved from http://agecon2.tamu.edu/people/faculty/mccarl-
bruce/papers/1212FASOMGHG_doc.pdf 

EPA. (2009, October 30). GREET. RFS2 FRM modified version of GREET1.8c Upstream Emissions 
Spreadsheet. 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National 
Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and. 
Japan: IGES. 

3.2. Domestic Land-Use Change 

To model the land-use change within the United States, EPA used the FASOM model to project the land 

conversions (Adams et al., 2005). In particular, EPA used the model to project land-use change from the 

increase in corn ethanol production and the change in GHG emissions from the changes in land use. 

3.2.1. EPA RIA Methodology and Data Sources 

The FASOM model includes the land-use categories cropland, cropland pasture, forestland, forest 

pasture, rangeland, developed land, and acres enrolled in the Conservation Reserve Program (CRP). The 

model determines how much of each land-use category is actively used in production and how much is 

idle during a specific time period. 

Since the publication of the EPA RIA, FASOM has been updated to allow analysis across the forest and 

agricultural sector combined as opposed to separate runs of the forest and agricultural sector 

components. These model updates are not reflected in the RIA results. FASOM did not explicitly account 

for the corn oil extracted from distillers grain. Since the RIA, the model has been modified to add this 

pathway as part of the dry milling process. The original analysis is based on the assumption that by 

2022, 70 percent of dry mill ethanol plants will withdraw corn oil via extraction, 20 percent will 

withdraw corn oil via fractionation, and 10 percent will do neither (EPA, 2010a). 

http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/1212FASOMGHG_doc.pdf
http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/1212FASOMGHG_doc.pdf
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Since the RIA, FASOM was also updated with distillers grain and soluble replacement rates for corn and 

soybean meal in animal feed. These replacement rates are based on research published by Argonne 

National Laboratory (Arora et al., 2008). 

For the corn ethanol scenario, the relative demand for crop and livestock production had a direct and 

indirect effect on land use. These assumptions are presented in Table 3-11. 

Table 3-11: Changes in Cropland Based on FASOM 

Cropland Categories Change in Cropland Used for Production and Idled 

Total Cropland +0.9 million acres 

Total Cropland Pastures −0.9 million acres 

Total Forest Pasture +0.2 million acres 

Forestland −0.03 million acres 

Source: FASOM output; “EPA_2010_RFS2_regulatory_impact_assessment.pdf”. 

 
The land-use allocation over time is shown in Figure 3-1 for the Fuel-Specific Scenario. 

 

 

Source: RTI International, 2010. 

Figure 3-1: Changes in Land Allocation Over Time (2017 and 2022) for the Fuel-Specific Scenario 
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The land-use change is modelled across three phenomena: 

1. Developed Land: FASOM assumed that developed land is of higher value than all other land 

categories, the amount of developed land increased at a steady rate over time and the rate of 

urbanization is assumed to be exogenous based on projections of population and income growth. 

2. Carbon Sequestration: FASOM accounted for carbon storage in trees, understory, and litter within 

both forests and plantations of woody biofuel feedstocks but excludes carbon stored in annually 

cultivated crops. Changes in sequestration for land moved from the forestry and agricultural sectors 

into developed land is tracked within FASOM. 

3. Agricultural Land-Use Change GHG Emission Factors: FASOM agricultural land GHG emission factors 

were updated with the DAYCENT/CENTURY model runs to reflect scientific updates at the time of 

the model runs (RTI International, 2010). 

To calculate the annualized timing of cumulative GHG emissions due to land-use change, all emissions 

associated with agricultural land (CO2 and N2O from cropland, pastureland, and CRP land) and forestland 

between 2000 and 2022 (CO2 from biomass, soil, and forest products) are summed as the emissions 

from these categories accumulate over time. EPA’s RIA states, “The GHG emissions associated with 

converting land into crop production would accumulate over time with the largest release occurring in 

the first few years due to clearing with fire or biomass decay. After the land is converted, moderate 

amounts of soil carbon would continue to be released for approximately 20 years. Furthermore, there 

would be foregone sequestration associated with the fact that the forest would have continued to 

sequester carbon had it not been cleared for approximately 80 years.” 

3.2.2. EPA RIA Results 

The aggregate GHG emissions from domestic land-use changes are a result of the difference in land-use 

change and management practices in 2022 and dependent on changes in the land-use patterns that 

occurred prior to 2022. FASOM generates GHG emissions estimates with land-use change for every five-

year period within the identified timeframe (Adams et al., 2005). Using these data, the EPA RIA 

calculated the GHG emissions changes for corn ethanol and annualized the cumulative change (EPA, 

2010a). The change in emissions is shown in Figure 3-2. 
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Figure 3-2: Change in GHG Emissions Due to Domestic Land-use Change by Scenario, 2022, Annualized Over 
30 years for the Different Fuels within RFS2 (Source: Figure 2.4-19 in EPA RIA) 

(Units: kg CO2e/MMBtu) 

Table 3-12 below shows the same EPA RIA result in g CO2e/MMBtu. 

Table 3-12: Domestic Land Use Change Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 -4,000 

 

3.2.3. ICF Methodology and Data Sources 

ICF estimated the domestic land-use change GHG emissions from expanding cropland to produce corn 

for ethanol production using the most recent related datasets, analyses, and available LUC models. The 

RIA relied on projections and estimates from the Forest and Agricultural Sector Optimization Model 

(FASOM), which are discussed above. Actual U.S. corn acreage through 2014 has exceeded the RIA 

acreage projections. The domestic LUC assessment combines new domestic acreage change estimates 

with improved carbon flux emission factors. 
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The RIA domestic LUC analysis used FASOM acreage change projections and emission factors. In the ICF 

analysis, we used emission factors from FASOM that had been updated with DAYCENT/CENTURY 

modeling efforts. These emission factors better reflect irrigation effects and N2O emissions from 

cropland and pastureland. The RIA assessed CO2 and N2O emissions from cropland, pastureland, and 

Conservation Reserve Program (CRP) acreage conversions, as well as CO2 emissions from projected 

conversions of forest to cropland. For the RIA, the total emissions were summed for all the conversions 

to generate cumulative GHG emissions over the time horizon (2000–2022). 

ICF’s domestic LUC analysis closely followed the 2015 GREET model’s Carbon Calculator for Land Use 

Change from Biofuels Production (CCLUB) (Dunn et al. 2015). ICF’s specific method used U.S. acreage 

conversions to corn ethanol from the previously described GTAP model available within CCLUB. GTAP 

quantifies acreage change for 18 Agro-ecological Zones (AEZs), but only AEZs 7–16 are relevant (i.e., 

non-zero) for the United States.27 The types of acreage included are forests, grassland, cropland-pasture, 

and young forest shrub (YF shrub). YF shrub acreage change and conversion emissions were quantified 

by applying the relevant forest correction factor to the forest conversion values and emission factors for 

the GTAP model only. Table 3-13 shows the GTAP data for the AEZs, land types, and GTAP dataset year 

(2011, 2013). The improvements made in the GTAP model between 2011 and 2013 resulted in the 

significant decreases in acres converted. ICF performed our analysis on the 2013 model results. Negative 

values denote reductions of each land type (e.g. forest, grassland, crop-pasture) that are converted to 

feedstock (corn). A positive value would denote an increase in land of that type. 

Table 3-13: GTAP Data for U.S. Acreage Changes by Year, AEZ, and Land Type 

AEZ 
Number 

Forest to Corn 
(ha) 

Grassland to Corn 
(ha) 

Cropland-Pasture to 
Corn 
(ha) 

Young Forest Shrub to 
Corn 
(ha) 

2013 2011 2013 2011 2013 2011 2013 2011 

AEZ 7 -2,322 -3,479 -53,856 -340,320 -456,667 -224,128 639 957 

AEZ 8 -4,619 -16,931 -19,576 -133,912 -163,222 -102,281 -2,636 -9,662 

AEZ 9 -860 -2,022 -1,166 -10,238 -84,275 -64,792 19 44 

AEZ 10 -26,768 -179,636 -12,259 -82,626 -539,324 -403,376 -7,037 -47,224 

AEZ 11 -16,888 -93,360 -5,579 -42,881 -413,120 -298,278 -79 -436 

AEZ 12 -8,384 -30,064 -587 -14,111 -118,649 -74,470 -1,822 -6,532 

AEZ 13 -2,654 -736 -132 -11,662 -9,406 -1,340 -1,668 -463 

AEZ 14 -2,148 -5,032 503 -3,518 -3,799 -278 -1,332 -3,120 

AEZ 15 -128 -200 34 -214 0 0 -81 -127 

AEZ 16 -2 -5 1 -3 0 0 -2 -4 

TOTAL -64,773 -331,465 -92,617 -639,484 -1,788,462 -1,168,943 -13,999 -66,568 

 

                                                           
 

27
 The Domestic and International Land-Use Change sections of the Literature Review discuss in detail AEZs (Agro-Ecological 

Zones). 
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ICF varied the acreage conversion GHG emissions for the three available models in CCLUB for domestic 

LUC: Century/COLE, Woods Hole, and Winrock. Century/COLE included regional variations (AEZs) for all 

available GTAP acreage changes, along with non-soil and annual growth emissions. Winrock included 

three emission factor options (forest, grassland, cropland-pasture), and Woods Hole two (forest, 

grassland). The Century/COLE emission factors also provided variations for tillage and soil depth, which 

were included as scenarios in the final results. For each LUC variation, the total cumulative emissions 

were annualized for the CCLUB default input of 30 years. We converted the results to the final 

g CO2e/MMBtu based on the CCLUB values for annual ethanol production increases from the 2004 base 

year (11.59 billion gallons to reach the 15 billion gallons mandate) and lower heating value 

(76,330 Btu/gal). Sections 2.2.2 and 2.2.3 of the literature review detail the Winrock and Woods Hole 

conversion emission factors, respectively. Table 3-14 and Table 3-15 show the Century/COLE emission 

factor variations for the conventional and reduced till scenarios assessed in Chapter 3. Emission factors 

varied by AEZ, soil depth (100 cm, 30 cm), and land conversion type. Positive emission factors denote 

carbon emissions from the soil and negative values denote sequestration of carbon within the soil. 

Table 3-14: Soil Carbon Emission Factors for Reduced Till in Century/COLE 

AEZ 
Number 

Forest Carbon 
Emission Factor 

(Mg C/ha×yr) 

Grassland Carbon 
Emission Factor  

(Mg C/ha×yr) 

Cropland-Pasture 
Emission Factor 

Carbon  
(Mg C/ha×yr) 

Young Forest-Shrub 
Carbon Emission 

Factor  
(Mg C/ha×yr) 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

AEZ 7 -0.14 -0.02 -0.48 -0.53 -0.57 -0.69 -0.08 -0.01 

AEZ 8 0.23 0.49 -0.30 -0.30 -0.43 -0.52 0.13 0.27 

AEZ 9 0.45 0.82 -0.24 -0.20 -0.38 -0.46 0.25 0.46 

AEZ 10 0.50 0.90 -0.01 0.12 -0.30 -0.35 0.27 0.48 

AEZ 11 0.21 0.47 0.17 0.38 -0.23 -0.26 0.09 0.21 

AEZ 12 0.50 0.95 0.29 0.55 -0.19 -0.20 0.21 0.41 

AEZ 13 -0.50 -0.51 -0.67 -0.76 -0.78 -0.93 -0.20 -0.21 

AEZ 14 -0.47 -0.48 -0.61 -0.70 -0.65 -0.78 -0.12 -0.13 

AEZ 15 0.10 0.33 -0.23 -0.18 -0.44 -0.52 0.02 0.07 

AEZ 16 0.10 0.33 -0.23 -0.18 -0.44 -0.52 0.02 0.07 

 

Table 3-15: Soil Carbon Emission Factors for Conventional Till in Century/COLE 

AEZ 
Number 

Forest Carbon 
Emission Factor 

(Mg C/ha×yr) 

Grassland Carbon 
Emission Factor  

(Mg C/ha×yr) 

Cropland-Pasture 
Emission Factor Carbon  

(Mg C/ha×yr) 

Young Forest-Shrub 
Carbon Emission Factor  

(Mg C/ha×yr) 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

30 cm 
depth 

100 cm 
depth 

AEZ 7 -0.10 0.04 -0.44 -0.48 -0.54 -0.65 -0.06 0.03 
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AEZ 
Number 

Forest Carbon 
Emission Factor 

(Mg C/ha×yr) 

Grassland Carbon 
Emission Factor  

(Mg C/ha×yr) 

Cropland-Pasture 
Emission Factor Carbon  

(Mg C/ha×yr) 

Young Forest-Shrub 
Carbon Emission Factor  

(Mg C/ha×yr) 

AEZ 8 0.28 0.56 -0.26 -0.25 -0.40 -0.48 0.15 0.30 

AEZ 9 0.49 0.90 -0.20 -0.15 -0.34 -0.41 0.28 0.50 

AEZ 10 0.55 0.97 0.02 0.17 -0.27 -0.31 0.29 0.52 

AEZ 11 0.24 0.51 0.20 0.42 -0.21 -0.22 0.11 0.23 

AEZ 12 0.51 0.99 0.30 0.59 -0.17 -0.17 0.22 0.42 

AEZ 13 -0.45 -0.45 -0.63 -0.71 -0.74 -0.88 -0.18 -0.19 

AEZ 14 -0.42 -0.42 -0.57 -0.65 -0.61 -0.73 -0.11 -0.11 

AEZ 15 0.14 0.39 -0.20 -0.13 -0.41 -0.48 0.03 0.08 

AEZ 16 0.14 0.39 -0.20 -0.13 -0.41 -0.48 0.03 0.08 

 

3.2.4. ICF Results 

Table 3-16 shows the final results for all the scenarios run using the CCLUB methodology. 

Conservatively, ICF recommends utilizing the Century/Cole 100 cm conventional till scenario of 

−2,038 g CO2e/MMBtu. 

Table 3-16: Final Scenario Results for 2013 GTAP Acreage Change Data 

 
Total Direct Emissions 

(Mg CO2e) 
Annualized Emissions 

(Mg CO2e/year) 
Direct Emissions 

(g CO2e/gal) 
Direct Emissions 
(g CO2e/MMBtu) 

Century/COLE
—30cm—
Reduced Till 

−52,191,279 −1,739,709 −150.1 −1,965 

Century/COLE
—100cm—
Reduced Till 

−62,656,429 −2,088,548 −180.2 −2,359 

Century/COLE
—30cm—
Conventional 
Till 

−45,625,214 −1,520,840.5 −131.2 −1,718 

Century/COLE
—100cm—
Conventional 
Till 

−54,120,694 −1,804,023.1 −155.7 −2,038 

Woods Hole 48,163,909 1,605,464 138.5 1,813.7 

Winrock 280,879,558 9,362,652 807.8 10,577.1 

 

Table 3-17 shows the ICF current conditions value, which utilizes the CCLUB model with 2013 GTAP 

acreage change data. 
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Table 3-17: Domestic Land Use Change Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions −2,038 

 

3.2.5. Limitations, Uncertainty, and Knowledge Gaps 

The major variations in domestic LUC results between GTAP modeling years highlights the need for 

more study to determine if a stable trend or value emerges regarding emissions from LUC. Future 

research should continue to closely track annual corn acreage for ethanol production and the associated 

acreage conversions to generate a more certain assessment of the linkages between corn ethanol 

production and domestic LUC. Until these datasets, trends, and quantitative uncertainty assessments 

can be established, LUC will continue to be the most difficult life-cycle element to accurately analyze. 

3.2.6. References: Domestic Land-Use Change 

Adams, D., Alig, R., McCarl, B. A., & Murray, B. C. (2005). FASOMGHG Conceptual Structure and 
Specification: Documentation. Retrieved from http://agecon2.tamu.edu/people/faculty/mccarl-
bruce/papers/1212FASOMGHG_doc.pdf 

Arora, Salil, May Wu, and Michael Wang. (2008, September). Update of Distillers Grains Displacement 
Ratios for Corn Ethanol Life-Cycle Analysis. Retrieved from Argonne National Laboratory: 
http://www.transportation.anl.gov/pdfs/AF/527.pdf 

Dunn JB, Mueller S, Qin Z, Wang MQ (2014) Carbon Calculator for Land Use Change from Biofuels 

Production (CCLUB 2015). Argonne National Laboratory (ANL). 

RTI International. (2010, March). Forest and Agricultural Sector Optimization Model (FASOM) Technical 
Report for Renewable Fuel Standard (RFS2) - U.S. Agricultural and Forestry Impacts of the Energy 
Independence and Security Act: Forest and Agricultural Sector Optimization Model (FASOM) R. 
Retrieved from EPA-HQ-OAR-2005-0161-3178: 
http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2005-0161-3178 

3.3. Domestic Rice Methane 

The methane emissions associated with domestic rice production were included in the EPA RIA analysis. 

When rice fields are flooded, the organic material decomposes causing a lack of oxygen in the soil. These 

anaerobic conditions cause the production of methane, a portion of which is diffusively transported 

from the soil to the atmosphere. Methane can escape from the soil and bubble through the flood 

waters. 

http://www.transportation.anl.gov/pdfs/AF/527.pdf
http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2005-0161-3178
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3.3.1. EPA RIA Methodology and Data Sources 

FASOM was used to model the methane emissions from rice produced in the United States that is grown 

in flooded fields (Adams et al., 2005). The model assumed that a reduction of rice acreage corresponded 

in a reduction in rice cultivation methane emissions. The model did not consider any additional changes 

in rice cultivation practices (e.g., nutrient management, ratooning) that could also affect emissions. 

Therefore, the changes in emissions from rice cultivation were the direct result of changes in the 

planted acreage within the model. 

Methane emissions per acre were calculated based on the regional emission factors by acre for each 

region based on the EPA’s U.S. GHG inventory for 1990–2003 (EPA, 2005). FASOM assumed that rice 

methane emissions would decrease for all fuel pathways, including corn ethanol production due to 

decreased domestic rice acreage. 

3.3.2. EPA RIA Results 

Table 3-18 shows the emission factors used in FASOM. 

Table 3-18: Average Methane Emission Factors from Irrigated Rice Cultivation by Region (Source: Table 2.4-
9 from EPA RIA) (Units: kg CO2e/acre) 

Crop 
Corn 
Belt 

Great 
Plains 

Lake 
States 

North-
east 

Pacific 
Northwest-

East side 

Pacific 
South-
west 

Rocky 
Mountains 

South 
Central 

South-
east 

South-
west 

Rice 1,826.1 N/A N/A N/A N/A 1,783.4 N/A 2,249.2 N/A 4,375.0 

Source: FASOM output; “EPA_2010_RFS2_regulatory_impact_assessment.pdf”. 
N/A = Not Applicable. 

 

Table 3-19 shows the relative emissions change based on the change in acreage from rice production to 

corn production. 

Table 3-19: Relative Change in Domestic Methane from Rice Production 

Emission 
Category 

Units 
2012 2017 2022 

Fuel-
Specific 

Control 
Case 

Difference 
Fuel-

Specific 
Control 

Case 
Difference 

Fuel-
Specific 

Control 
Case 

Difference 

Methane 
from Rice 
Cultivation 

000 Tons 
CO2e 

18,410 17,800 −359.8 N/P N/P −227.5 N/P N/P −352 

Source: FASOM output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Input_Ag” tab. 
N/P = Not Provided. 

 

EPA’s analysis resulted in a reduction of 42,000 tons CO2e (see Table 2.4-10 from EPA RIA). 
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The RIA estimated the overall contribution of domestic rice methane to the corn ethanol life-cycle GHG 

emissions to be less than −500 g CO2e/MMBtu. The RIA value is shown in Table 3-20 below. 

Table 3-20: Domestic Rice Methane Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 −500 

 

3.3.3. ICF Methodology and Data Sources 

Chapter 2 identified several areas where recent trends in domestic rice production, and the associated 

methane emissions differ from the production and emissions projected in the RIA. Most notably, at least 

through 2014, the RIA overestimated total rice acreage (and thus the associated methane emissions). 

Countering these overestimates, however, the RIA used the IPCC AR2 CH4 GWP of 21. The IPCC revised 

this GWP to 25 in AR4, which implies a downward bias in the projected CH4 emissions associated with 

domestic rice production in the RIA. In this analysis, ICF used a methodology similar to that used in the 

RIA but incorporates new rice production data and uses the AR4 CH4 GWP. 

ICF determined the GHG emission impact of RFS2-related corn ethanol production on domestic rice 

methane emissions using the following methodology. Step 1 identified the difference in harvested rice 

acreage and associated emissions between the control case (i.e., where corn ethanol production has 

expanded under the RFS2) and the reference case (i.e., no RFS2). EPA projections for harvested rice 

acreage (based on FASOM simulations) for 2012 and 2017 for three scenarios are shown in Table 3-21 

where increased corn production for ethanol results in reduced domestic rice acres. Values for 2014 are 

interpolated from the 2012 and 2017 values. The “Corn Only Case” shows FASOM model results that 

exclude any effects of other RFS2 biofuels on the control case (i.e., the control case reflects full multi-

fuel compliance with the RFS2). 

Table 3-21: EPA RIA Domestic Rice Acreage for Corn Only, Control, and Reference Scenarios 

Year 

Million Acres Acre Ratios 

Corn Only Case Control Case Reference Case 
Reference Case / 

Control Case 
Corn Only Case / 

Control Case 

2012 3.50 3.36 3.82   

2014 3.63 3.50 3.90 1.12 1.04 

2017 3.84 3.72 4.03   

 

To calculate the total rice methane emissions, ICF used the same regional assessment method as the 

RIA. As discussed and detailed in the literature review (see Section 2.3.3), the regional acreage and 
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associated emission factors have been updated in recent EPA reports. Our assessment used these data 

(EPA 2016) to calculate new results for methane emissions in both reference and control cases. The 

acreage data in the recent reports were used as the control case, and ICF determined reference and 

corn only case acreage by applying the average ratio of reference acreage to control acreage and corn 

only to control acreage from the available projections (see Table 3-21). Table 3-22 indicates the ICF 

scenario acreages and associated emissions for the regions assessed. 

Table 3-22: ICF Regional Acreage and GHG Emissions for Domestic Rice Methane 

Region 

Harvested Acreage 
(million acres) 

GHG Emissions 
(MMT CO2e) 

2014 Actual 
Acres (Control 

Case) 
Reference Case Corn Only Case 

Corn Only 
Case 

Reference Case 

Arkansas  1.98 2.12 2.05 7.65 8.23 

California  0.68 0.73 0.70 1.51 1.62 

Florida  0 0 0 0.00 0.00 

Illinois  0 0 0 0.00 0.00 

Louisiana  0.78 0.83 0.81 3.01 3.24 

Minnesota  0.002 0 0.003 0.01 0.01 

Mississippi  0.13 0.14 0.14 0.51 0.55 

Missouri  0.26 0.28 0.27 0.82 0.88 

New York  0 0 0 0.00 0.00 

South 
Carolina  

0 0 0 0.00 0.00 

Total 3.82 4.10 3.97 13.50 14.52 

 

To estimate a final life-cycle emission factor, ICF calculated the difference in total GHG emissions (all 

regions included) between the “reference case” and “corn only case” scenarios to quantify the 

incremental GHG emissions from the reference to the corn only case. These incremental emissions were 

then divided by the incremental corn ethanol production from the RIA’s reference and corn only case 

(3.03 billion gallons in 2014). We then converted this GHG emissions per volume of ethanol value to an 

emission factor (g CO2e/MMBtu) using the heating value of ethanol to convert the volume in gallons to 

energy in Btus. 

3.3.4. ICF Results 

Relative to the RIA, ICF found an increased reduction in corn ethanol emissions associated with changes 

in domestic rice production related to RFS2 compliance. The ICF value is shown in Table 3-23 below. 

Table 3-23: Domestic Rice Methane Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 
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ICF: 2014 Current Conditions −4,034 

 

3.3.5. Limitations, Uncertainties, and Knowledge Gaps 

ICF’s domestic rice methane assessment continued to rely on the relationships (i.e., scenario acre ratios) 

derived from the FASOM-modeled RFS2 RIA projections for rice acreage for the control and reference 

cases (see Table 2-21). Future work should reevaluate (i.e., remodel) these acreage numbers to better 

assess the difference, if any, between these two cases. While our assessment used updated emission 

factors to generate an assessment to compare to the RFS2 RIA, the lack of data in the reference and 

control cases for acreage limit the reliability of this assessment. Still, both our results and the RIA’s show 

domestic rice methane to be a small portion of the overall corn ethanol life-cycle GHG emissions. 

3.3.6. References: Domestic Rice Methane 

Adams, D., Alig, R., McCarl, B. A., & Murray, B. C. (2005). FASOMGHG Conceptual Structure and 
Specification: Documentation. Retrieved from http://agecon2.tamu.edu/people/faculty/mccarl-
bruce/papers/1212FASOMGHG_doc.pdf 

Dunn JB, Mueller S, Qin Z, Wang MQ (2014) Carbon Calculator for Land Use Change from Biofuels 

Production (CCLUB 2015). Argonne National Laboratory (ANL). 

EPA. (2005). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2003. EPA 430-R-05-003. 
Retrieved from http://www3.epa.gov/climatechange/Downloads/ghgemissions/05CR.pdf 

EPA. (2016). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. U.S. Environmental 

Protection Agency. EPA 430-R-16-002. 

https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-

Text.pdf 

3.4. Domestic Livestock 

Domestic livestock production and management contribute non-combustion GHG emissions through 

enteric fermentation and manure management. Enteric fermentation produces methane emissions 

during the animals’ digestive processes. Ruminant animals (i.e., cattle, buffalo, sheep, and goats) are the 

largest emitters of methane from enteric fermentation. Manure management also emits methane, with 

the largest contributors being large hog and dairy farms. The animals evaluated in EPA’s analysis include 

dairy and beef cattle, swine, and poultry. 

3.4.1. EPA RIA Methodology and Data Sources 

FASOM was used to model the changes in methane emissions associated with livestock enteric 

fermentation and manure management based on changes in the number of livestock. FASOM models 

http://www3.epa.gov/climatechange/Downloads/ghgemissions/05CR.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
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the change in livestock production as costs for feed changes due to corn ethanol production. The enteric 

fermentation emissions were determined based on the number of livestock by type, and the average 

emissions per animal. Within FASOM, emissions mitigation options are available, however in EPA’s 

analysis they were not used. Enteric fermentation emissions were estimated based on the number of 

animals within each livestock category (Adams et al., 2005). 

3.4.2. EPA RIA Results 

The emission factors per animal are based on EPA’s U.S. GHG inventory report for 1990–2003 and are 

presented in Table 3-24 (EPA, 2005). 

Table 3-24: Domestic Livestock Emission Factors 

Emission Source Dairy Cattle Swine Poultry 

Enteric Fermentation (kg CH4/head-year) 121 53 1.5 N/A 

Manure Management (kg CH4/head-year) 78 2 23.5 0.02 

Source: EPA’s U.S. GHG inventory report for 1990–2003; “Renewable Fuel Lifecycle Greenhouse Gas Calculations 
(1).xlsx,” “Input_Ag” tab. 
N/A = Not Applicable. 

 

Table 3-25 show the differences in livestock populations reported in the EPA RIA. 

Table 3-25: Differences in Livestock Populations from the RIA 

Livestock Type 
Change in Population 

(Head) 

Dairy 
(mature cows) 

−20,000 

Beef +90,000 

Poultry
 

−58,840,000 

Swine −220,000 

 

In the RIA, corn ethanol was projected to result in a change in domestic livestock emissions of 

−3,746 g CO2e/MMBtu. 

Table 3-26: Domestic Livestock Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 −3,746
a
 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 109 January 12, 2017 

a
 Includes a decrease in CH4 (−3,381 gCO2e/MMBtu ethanol) from DGS. 

 

3.4.3. ICF Methodology and Data Sources 

In the RIA, EPA estimated the impact of the RFS2 on future livestock populations by modeling the 

change in livestock with and without the RFS2. ICF utilized the RIA change in livestock population data 

for dairy cows (mature only), beef cattle, swine, and poultry in conjunction with revised emission factors 

for these livestock types for enteric fermentation and manure management from the Inventory of U.S. 

Greenhouse Gases Emissions and Sinks: 1990–2014 (EPA 2016). For poultry populations, ICF assumed 

that the change in population shown in the RIA represented a change in poultry slaughtered, rather than 

the change in annual average poultry populations. In order to apply the annual emission factor 

developed in the Inventory of U.S. Greenhouse Gases Emissions and Sinks: 1990–2014 (EPA 2016), ICF 

first had to use a scaling factor to adjust poultry populations. For dairy, beef, and swine populations, ICF 

used the RIA estimated changes in population directly. 

To estimate the livestock emissions impacts from the implementation of the RFS2, ICF utilized the 

difference between the RIA’s control and reference cases, as shown in Table 3-27. Given that the RIA did 

not report a change in head for intermediate years, and given our methodology, ICF was not able to 

estimate associated emission estimates for intermediate years (i.e., 2014). As a result, we have used the 

same domestic livestock result of our analysis for 2022 as the domestic livestock contribution in our 

estimation of the LCA value for 2014. 

Table 3-27: Differences in Livestock Populations from the RIA 

Livestock Type 
Change in Population 

(Head) 

Dairy 
(mature cows) 

−20,000 

Beef +90,000 

Poultry
a 

−12,564,607 

Swine −220,000 
a 

Changes in poultry population have been adjusted to represent annual average population changes rather than 
changes in total head slaughtered. 

 

Table 3-28 shows the combined emission factors per head when taking into account the GWPs from the 

RIA (AR2 values) and the AR4 values that were used in this analysis. Table 3-28 also shows what the 

current emission factor would be if the AR2 GWP values were used. 
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Table 3-28: Livestock GHG Emissions Per Head (g CO2e/head) 

Livestock 
Type 

Enteric Methane 
(g CO2e/head) 

Manure Management 
(g CO2e/head) 

RIA (AR2) ICF (AR4) ICF (AR2) RIA (AR2) ICF (AR4) ICF (AR2) 

Dairy 2,541 3,625 3,045 1,021 2,065 1,799 

Beef 1,113 1,850 1,554 107 143 140 

Poultry N/A N/A N/A 4.57 3.21 2.83 

Swine 31.5 37.5 31.5 296 378 323 

 

As a result of the changes in livestock populations shown in Table 3-25 and the revised emission factors 

shown in Table 3-28, the associated changes in emissions related to enteric fermentation and manure 

management for 2022 are shown in Table 3-29. 

Table 3-29: Livestock GHG Emissions 

Livestock Type 
Enteric Methane Emissions 

(g CO2e/MMBtu) 
Manure Management Emissions 

(g CO2e/MMBtu) 

Dairy −351 −200 

Beef +807 +62 

Poultry N/A −195 

Swine −40 −403 

 

Table 3-30 shows the combined changes in emissions from both sources. 

Table 3-30: Total Combined Enteric and Manure Management GHG Emissions 

Livestock Type 
Combined Enteric Methane and Manure Management 

Emissions 
(g CO2e/MMBtu) 

Dairy −551 

Beef 869 

Poultry −195 

Swine −443 

Total −320 

 

3.4.4. Reduced Methane from DGS as Animal Feed: Domestic Livestock 

The use of DGS as an animal feed for beef cattle replacing conventional animal feed reduces the 

methane emissions from beef livestock. ICF utilized the GREET 2015 reduction factors of 

0.084 kg CO2e/dry lb of dry DGS (DDGS) and 0.059 kg CO2e/dry lb of wet DGS (WDGS) for every dry 
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pound of DGS consumed by beef cattle. Based on Renewable Fuels Association data,28 45 percent of 

DGS is consumed by beef cattle. ICF utilized the DGS production per gallon of ethanol by ethanol 

production type, which is consistent with the fuel production inputs in Section 3.10 and market share by 

production type. Table 3-31 shows the factors and results for reduced emissions per gallon and per 

MMBtu.29 

Table 3-31: Reduced Methane Emissions from DGS as Animal Feed by Ethanol Plant Type 

Ethanol Plant Type 
Ethanol 
Market 
Share 

DDGS Yield 
(lb/gallon) 

WDGS Yield 
(lb/gallon) 

Emissions 
Reduced 

(g CO2e/gallon) 

Emissions 
Reduced 

(g CO2e/MMBtu) 

Dry Mill w/o Corn Oil 
Extraction 

17.7% 4.207 5.522 −191 −2,506 

Dry Mill w/ Corn Oil 
Extraction 

70.9% 4.024 5.282 −183 −2,397 

Wet Mill 11.4% - - - - 

Per Average Gallon - 3.598 4.723 −163.56 −2,143 

 

3.4.5. ICF Results 

In our analysis, the combined emissions are −2,463 g CO2e/MMBtu. The differences between the results 

of this analysis and the RIA’s analysis can largely be attributed to the revised assumptions used in GREET 

to calculate the reduced methane emissions from DGS fed to livestock. 

Table 3-32: Domestic Livestock Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions
a
 −2,463 

a
 Result is based on 2022 change in livestock data. 

 

3.4.6. Limitations, Uncertainty, and Knowledge Gaps: Domestic Livestock 

Because ICF did not have access to the RIA’s original control and reference scenario data, there is 

uncertainty surrounding the populations utilized to create the original changes in livestock. Additionally, 

as the original RIA only provided a single output for the year 2022, data was not available to develop 

changes in livestock emissions for intermediate years, therefore the emission changes for 2022 are used 

as a proxy. Finally, we do not believe the RIA accounted for increases in livestock production over time, 

                                                           
 

28
 http://www.ethanolrfa.org/resources/industry/co-products/#1456865649440-ae77f947-734a 

29
 Calculations take into account GREET defaults of 12% moisture content for DDGS and 65% moisture content for WDGS 
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e.g., dairy milk production and beef weight increases when accounting for the population changes in 

future years. Therefore, the population changes also do not consider these production changes. 

The change in poultry populations used in the RIA appears to represent the total number of animals 

alive during each year. ICF adjusted this number to represent a steady-state population to account for 

the lifetime of the animals. ICF’s adjustment for the number of steady-state heads is more appropriate 

for the emission factors used from EPA (2016) which are on an emissions per head per year basis. This 

analysis, like the RIA, only takes into account the change in livestock populations between the reference 

and control cases. 

3.4.7. References: Domestic Livestock 

Adams, D., Alig, R., McCarl, B. A., & Murray, B. C. (2005). FASOMGHG Conceptual Structure and 
Specification: Documentation. Retrieved from http://agecon2.tamu.edu/people/faculty/mccarl-
bruce/papers/1212FASOMGHG_doc.pdf 

EPA, 2005. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2003. EPA 430-R-05-003. 
Retrieved from http://www3.epa.gov/climatechange/Downloads/ghgemissions/05CR.pdf 

EPA, 2010a. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. EPA-420-r-10-006. 
February 2010. 

EPA, 2016. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. U.S. Environmental 
Protection Agency. EPA 430-R-16-002. 
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-
Text.pdf 

USDA, 2016b. USDA Agricultural Projections to 2025. USDA Agricultural Projections No. (OCE-2016-1) 99 
pp, February 2016. http://www.ers.usda.gov/publications/oce-usda-agricultural-
projections/oce-2016-1.aspx 

3.5. International Livestock 

In order to be congruous with the domestic livestock emissions, enteric fermentation and manure 

management were evaluated for international livestock. The GHG impacts associated with changes in 

livestock across seven regions were calculated. The number of livestock was determined for: Canada, 

Western Europe, Eastern Europe, Oceania, Latin America, Africa, the Middle East, and India using the 

FAPRI-CARD model (FAPRI, 2004). The animals evaluated include dairy and beef cattle, swine, sheep, and 

poultry. 

3.5.1. EPA RIA Methodology and Data Sources 

Based on a similar methodology to the domestic livestock impacts, the FAPRI-CARD model determined 

the change in livestock production based on feed prices, and these changes were multiplied by the GHG 

emission factors for both enteric fermentation and manure management. The enteric fermentation 

emissions were determined based on the number of livestock by type, and the average emissions per 

http://agecon/
http://www3.epa.gov/climatechange/Downloads/ghgemissions/05CR.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
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animal. The manure management emissions similarly were determined by applying regional default 

methane and nitrous oxide emission factors by livestock type to the regional livestock production 

(FAPRI, 2004). The default emission factors for both the enteric fermentation and the manure 

management emissions are based on the default IPCC emission factors by regional practice (IPCC, 2006). 

3.5.2. EPA RIA Results 

Changes in livestock numbers attributed to the RFS2 are shown in Table 3-33. The differences shown are 

the difference (in thousand livestock head) between the Fuel-Specific Scenario and the Control Scenario. 

Table 3-33: International Livestock Changes Due to Corn Ethanol Production 

Region/Animal 
Type 

Units 2012 2017 2022 

Canada 

Dairy 000 Head −0.9 −3.0 −3.0 

Beef 000 Head −7.8 10.5 61.2 

Swine 000 Head −190.8 −457.2 −307.8 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head 390.8 857.3 700.7 

Western Europe 

Dairy 000 Head 0.2 −1.4 −1.1 

Beef 000 Head −3.3 −21.9 −28.7 

Swine 000 Head 10.7 5.7 −9.9 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head 147.1 538.4 733.8 

Eastern Europe 

Dairy 000 Head 0.0 0.0 0.1 

Beef 000 Head 5.5 19.4 18.3 

Swine 000 Head −58.7 −143.7 −51.6 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head 1,209.1 3,566.5 3,528.7 

Oceania 

Dairy 000 Head 0.1 1.8 3.6 

Beef 000 Head 11.6 104.4 196.0 

Swine 000 Head 21.2 3.9 −4.3 

Sheep 000 Head −11.3 1.9 35.4 
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Region/Animal 
Type 

Units 2012 2017 2022 

Poultry 000 Head −205.9 733.5 1,342.1 

Latin America 

Dairy 000 Head −42.2 −112.1 −105.0 

Beef 000 Head −73.6 −342.3 −377.4 

Swine 000 Head −15.5 −43.1 36.0 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head −1,806.5 328.3 2,072.8 

Asia 

Dairy 000 Head −20.4 −55.6 −46.6 

Beef 000 Head 901.8 788.3 964.3 

Swine 000 Head 6.3 −254.8 −72.6 

Sheep 000 Head −534.2 −1,132.0 −702.2 

Poultry 000 Head −1,578.2 −682.2 1,477.3 

Africa and Middle East 

Dairy 000 Head −65.6 −195.4 −214.8 

Beef 000 Head −9.0 −32.3 −37.3 

Swine 000 Head 0.0 0.0 0.0 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head −502.2 −660.1 −312.1 

India 

Dairy 000 Head 0.0 −0.1 −0.1 

Beef 000 Head −4.2 −55.7 −31.2 

Swine 000 Head 0.0 0.0 0.0 

Sheep 000 Head 0.0 0.0 0.0 

Poultry 000 Head −745.5 −622.6 26.2 

Source: FAPRI output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Input_Ag” tab. 

 

The emission factors from the IPCC are shown below in Table 3-34 (IPCC, 2006). The enteric 

fermentation and manure management emission factors were multiplied by the activity data in Table 

3-33 to estimate the emissions from each livestock practice. 
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Table 3-34: International Livestock Emission Factors 

Emission Source/Region Dairy Cattle Swine Sheep Poultry 

Enteric Fermentation (kg CH4/head-year) 

Western Europe 121 53 1.5 8 N/A 

Eastern Europe 109 57 1.5 8 N/A 

Oceania 89 58 1 5 N/A 

Latin America 81 60 1 5 N/A 

Asia 63 56 1 5 N/A 

Africa and Middle East 61 47 1 5 N/A 

Indian Subcontinent 40 31 1 5 N/A 

Manure Management (kg CH4/head-year) 

Western Europe 51 15 15.5 0.28 0.02 

Eastern Europe 27 13 6.5 0.28 0.02 

Oceania 29 2 18 0.15 0.02 

Latin America 1 1 1 0.15 0.02 

Asia 18 1 4 0.15 0.02 

Africa and Middle East 1.5 1 2 0.15 0.02 

Indian Subcontinent 5 2 4 0.15 0.02 

Source: IPCC Guidelines; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Input_Ag” tab. 
N/A = Not Applicable. 

 

The RIA projected emissions due to U.S. corn ethanol production from changes in international livestock 

production as 3,458 g CO2e/MMBtu in 2022. 

Table 3-35. International Livestock Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 3,458 

 

3.5.3. ICF Methodology and Data Sources 

There is very limited data related to international livestock populations for determining the current 

population of livestock. ICF utilized the RIA international livestock population changes for the corn 
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ethanol case modeled by FAPRI-CARD for 2022 (EPA 2010). The population changes for diary, beef, 

swine, sheep, and poultry are shown in Table 3-36. 

Table 3-36: International Livestock Changes Due to Corn Ethanol Production by Region in 2022 
(head/billion Btu) 

Region Dairy Beef Swine Sheep Poultry 

Canada 0.00 0.05 −0.17 0.00 1.37 

Western Europe 0.00 −0.07 0.12 0.02 1.58 

Eastern Europe 0.00 −0.83 0.01 0.00 17.72 

Oceania −0.02 0.11 0.01 0.07 3.53 

Latin America −0.15 3.44 0.48 0.00 0.05 

Asia -0.09 0.17 -0.04 −1.19 −1.53 

Africa and Middle East −0.03 −0.45 0.32 0.00 −3.01 

India 0.00 0.12 0.02 0.00 −3.66 

 

For international livestock emission factors, ICF analyzed updated factors as available for enteric 

methane and methane and N2O emissions from manure management. The only available updated 

factors for international livestock were for Canadian cattle. The other international livestock data in the 

RIA were distributed by global region, so we were unable to update effective emission factors. 

3.5.4. ICF Results 

The primary changes to the emissions impacts from international livestock as a result of the corn 

ethanol portion of the RFS2 rule are due to the updated GWPs (and updated emission factors for 

Canada). Additionally, we have projected population changes only for 2022. The emissions impact is 

3,894 g CO2e/MMBtu. 

Table 3-37: International Livestock Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 3,894 
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3.5.5. References: International Livestock 

EPA, 2010a. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. EPA-420-r-10-006. 
February 2010. 

EPA, 2016. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2014. U.S. Environmental 
Protection Agency. EPA 430-R-16-002. 
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-
Text.pdf 

FAPRI. (2004). Documentation the FAPRI Modeling System. Ames, IA: Iowa State University. 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National 
Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and. 
Japan: IGES. 

USDA, 2016. USDA Agricultural Projections to 2025. USDA Agricultural Projections No. (OCE-2016-1) 99 
pp, February 2016. http://www.ers.usda.gov/publications/oce-usda-agricultural-
projections/oce-2016-1.aspx 

3.6. International Land-Use Change 

To model the change in cropland land internationally in response to increased corn ethanol production 

in the United States, the RFS2 RIA used the integrated Food and Agricultural Policy and Research 

Institute International model, maintained by the Center for Agricultural and Rural Development at Iowa 

State University (FAPRI-CARD) (FAPRI, 2004). 30 The Center for Agricultural and Rural Development at 

Iowa State University ran the FAPRI-CARD model on behalf of EPA. 

3.6.1. EPA RIA Methodology and Data Sources 

FAPRI-CARD projected the total changes in land area used for commodity production (crops and 

livestock) cropland by region.  The land-cover types (forests, grassland, etc.) affected and the location of 

the land conversions were determined using MODIS satellite data provided by Winrock International 

who produces the land-use conversions internationally from 2001 to 2007 (MODIS; Friedl, 2009). The 

land conversion scenarios analyzed were the following: 

 Annual Crops to/from Perennial Crops 

 Pasture to/from Perennial Crops 

 Pasture to/from Annual Crops 

 Natural Ecosystems to/from Annual Crops 

 Natural Ecosystems to/from Perennial Crops 

                                                           
 

30
 The Farm and Agricultural Policy Research Institute’s FAPRI CARD model examines and projects the production, use, stocks, 

prices, and trade for ethanol for several countries and regions of the world. 

https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
https://www3.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2016-Main-Text.pdf
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
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 Natural Ecosystems to/from Pasture 

Natural ecosystems include forests, grasslands, savannas, shrublands, wetlands, and barren land. 

The assessment assumes that the social, political, and economic forces that drove land-use change 

during this period of time will remain the same through 2022. 

The international land-use change emission impacts are based on: 

 Land Conversion Categories: The different types of land conversions were analyzed with satellite 

data to show their location and the land-cover types affected in order to estimate the international 

land-use change. 

 Forest Carbon Stock Estimates: EPA’s emission factors incorporated spatial, region-specific maps 

derived using adjusted biome-level Tier 1 default values from IPCC and supplemented with country-

specific data sources (Ruesch and Gibbs, 2008). 

 Land Clearing with Fire: Fire for land clearing is assumed to occur in all countries included in the 

analysis except China and Argentina. These estimates are based on the area burnt, the mass of fuel 

used for combustion and the emission factor for dry matter (IPCC, 2006). 

 Changes in Soil Carbon Stocks: The changes in soil carbon stocks on land converted to cropland 

were calculated based on Section 5.3.3.4 of the IPCC AFOLU section. The specific soil stock change 

factors used for land use, management, and inputs were multiplied by the reference carbon stocks. 

Following IPCC guidelines, the total difference in carbon stocks before and after conversion was 

averaged over 20 years (IPCC, 2006). 

 Foregone Forest Sequestration: Forest sequestration rates were taken from the IPCC Tier 1 default 

values for native forests. Updated literature values were available for tropical intact old growth 

forests (0.49 t C/ha/yr) and temperate and boreal forests (3–4 t CO2e/ha/yr) (Lewis et al., 2009) 

(Myneni et al., 2001). 

 Land Reversion Carbon Uptake Factors: All reversion factors (except reversion to forest) were 

estimated as the reverse of emission factors, and all increases in biomass stocks occurred in Year 1. 

Forest reversion factors are based on the assumption that biomass accumulates every year over the 

entire 30-year time period. 

 Change in Pasture Land Conversion: The analysis accounted for changes in pasture area resulting 

from livestock fluctuations in order to create a link between the livestock and land used for grazing. 

The regional pasture stocking rates determine the amount of land needed for pasture. Any 

unneeded pasture areas are available for cropland or to be returned to their natural state. In 

countries where the livestock rates increased, the land used for pasture can be added to the 

abandoned cropland, unused grassland, or result in deforestation. The average stocking rates for 

each of the 54 FAPRI-CARD regions were determined based on data on livestock populations from 

the United Nations Food and Agricultural Organization (FAO) (see Table 2.4-31 from EPA RIA) (EPA, 
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2010a). Outliers such as countries within the "CIS, Other" FAPRI-CARD region, Kazakhstan and 

Turkmenistan, were removed. Countries with unusually low regional stocking rates were adjusted. 

 Agricultural Land-Use Change GHG Emission Factors: Winrock International produced emission 

factors based on IPCC guidelines to calculate the GHG emissions associated with the projected land 

conversions. The international land-use change GHG impacts were annualized over 30 years with a 0 

percent discount rate. 

Accounting for pasture areas was essential as internationally more land is used for livestock production 

than crop production. As a result, the representation of Brazil within FAPRI-CARD explicitly accounts for 

changes in pasture area. 

3.6.2. EPA RIA Results 

Figure 3-3 presents the harvest area changes by crop and region. These results are for the corn ethanol 

scenario for 2022. The total change in international crop area harvested for 2022 corn ethanol was 

789,000 hectares, which results in 3.94 hectares/billion Btus (see Table 2.4-29 from EPA RIA) (EPA, 

2010a). The change in international pasture area decreased by 446,000 hectares, which resulted in a 

decrease of 2.23 hectares/billion Btus (see Table 2.4-32 from EPA RIA) (EPA, 2010a). 

 

Figure 3-3: Harvest Crop Area Changes by Crop and Region for Corn Ethanol, 2022 (Source: Figure 2.4-21 
from EPA RIA) (Units: 000s ha) 

The emission impacts for each region are shown in Table 3-38. These emission factors reflect the 

amount of carbon dioxide associated with each MMBtu of corn ethanol by region associated with the 

increased demand for corn ethanol and annualized over 30 years. Positive values indicated increases in 

emissions associated with the change in land use. 
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Table 3-38: International Land-Use Change GHG Emission Impacts by Region, 2022 (Source: Table 2.4-47 
from EPA RIA) (Units: kg CO2e/MMBtu) 

FAPRI-CARD Region 
Corn 

Ethanol 
 FAPRI-CARD Region 

Corn 
Ethanol 

Algeria 0.02  Myanmar (Burma) −0.06 

Argentina −0.31  Nigeria 0.76 

Australia 0.52  Africa, Other 1.13 

Bangladesh −0.43  Asia, Other 0.12 

Brazil: Amazon Biome 12.83  CIS, Other −1.50 

Brazil: Central-West Cerrados 4.09  Eastern Europe, Other 0.02 

Brazil: Northeast Coast 0.41  Latin America, Other 0.49 

Brazil: North-Northeast Cerrados 0.86  Middle East, Other 0.00 

Brazil: South 1.93  Pakistan −0.07 

Brazil: Southeast 1.56  Paraguay 0.03 

Canada −0.04  Peru −0.56 

China 0.56  Philippines 1.25 

New Zealand 0.05  Rest of World 1.04 

Colombia 0.25  Russia 0.01 

Cuba 0.05  South Africa 0.04 

Egypt −0.01  South Korea 0.00 

EU 0.47  Taiwan 0.00 

Guatemala 0.22  Thailand 0.22 

India 0.84  Tunisia 0.02 

Indonesia 3.34  Turkey −0.10 

Iran 0.09  Ukraine −0.13 

Iraq 0.01  Uruguay −0.03 

Ivory Coast 0.07  Uzbekistan −0.47 

Japan 1.22  Venezuela −0.21 

Malaysia −0.11  Vietnam 0.23 

Mexico 1.01  Western Africa 0.03 

Morocco 0.04  TOTAL 31.79 

Source: FAPRI-CARD output; “EPA_2010_RFS2_regulatory_impact_assessment.pdf”. 

 

The RIA reported emissions due to U.S. corn ethanol production from changes in international land use 

as 31.79 kg CO2e/MMBtu or 31,790 g CO2e/MMBtu in 2022 (see Table 3-39). 
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Table 3-39: International Land-Use Change Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 31,790 

 

3.6.3. ICF Methodology and Data Sources 

To evaluate the impact of U.S. production of corn ethanol on international land-use change, ICF utilized 

a variety of land-use change modeling results that have been published since 2010, as well as recent 

data and analysis on international land-use change that were not available when the RIA was conducted. 

We also considered alternative emission factors for land converted. A review of published literature 

finds that much of the international land-use change impacts projected in the RIA have not materialized. 

As a result, the emissions path associated with land-use change in the RIA is much higher than those 

that have been estimated based on current conditions, and estimated for future years. 

3.6.3.1. Changes in Acreage Data 

The international land-use change from U.S production of corn ethanol in the RIA was modeled using 

the output from the FAPRI-CARD model. This model uses a number of factors including population and 

GDP growth; production and consumption trends; existing trade patterns; and both international and 

domestic prices to determine the change in acres across 20 crops and 54 countries. The model, 

however, cannot distinguish what types of land will be affected by a given shock to the global 

agricultural system. 

Since 2010, Tahierpour and Tyner (2013) published a GTAP modelling scenario that reflects an increase 

in corn ethanol production from its 2004 level (3.41 billion gallons) to 15 billion gallons with GTAP 

recalibrated land-transformation parameters. This modelling scenario includes updated land-

transformation data to develop region-specific elasticities using two United Nations Food and 

Agriculture Organization (FAO) land-cover datasets. It also reflects evidence from recent studies that the 

costs of converting forest to cropland are higher than had been assumed in prior land-use change 

studies. The complete set of GTAP region land-use change simulation results from Taheripour and Tyner 

(2013) are available in Argonne National Laboratory’s CCLUB model (Dunn et al, 2014). These results are 

also shown in Table 3-40. 
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Table 3-40: GTAP Land-Use Change Output Generated by Taheripour and Tyner (2013) and Taken from Argonne National Laboratory’s CCLUB Model 

Description 
United 
States 

European 
Union 27 

Brazil Canada Japan 
China and 
Hong Kong 

India 
Central and 
Caribbean 
Americas 

South and 
Other 

Americas 
East Asia 

Malaysia 
and 

Indonesia 

 
(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

Forests −64,772 −14,718 62,449 −25,352 −5,041 −1,692 −7,005 4,456 68,910 2,245 892 

Grasslands −92,617 −18,835 −219,140 −14,759 −146 −86,841 −3,539 −9,854 −18,3325 −3,763 −2,974 

Cropland-
Grassland −1,788,462 0 −213,930 0 0 

0 0 0 0 0 0 

            

Description 
Rest of 

South East 
Asia 

Rest of 
South Asia 

Russia 

Other East 
Europe and 

Rest of 
Former 

Soviet Union 

Rest of 
European 
Countries 

Middle 
Eastern and 
North Africa 

Sub-Saharan 
Africa 

Oceania 
Countries 

Totals 
Internationa
l Total (w/o 

USA) 

 
 

(ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) (ha) 

 Forests −11,849 −3,099 87,329 −7,354 −240 168 −167,148 −543 −82,369 −17,589 
 Grasslands −2,528 −21,562 −145,276 −21,478 −188 −21,975 −294,788 −17,307 −1,160,890 −1,068,278 
 Cropland-

Grassland 
0 0 0 0 0 0 0 0 −2,002,393 −213,930 

 Source: Dunn et al. 2014 
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Since 2010, a number of studies have evaluated the land-use change outcomes projected in the RIA (see 

Chapter 2). These studies generally conclude that there is not a strong link between corn ethanol 

production in the United States and deforestation in other countries, particularly in Brazil where much 

of the RIA’s emissions related to indirect land use change were projected to occur. Additionally, among 

the broad range of emission estimates associated with indirect land-use change, across studies these 

estimates have decreased over time. For the land-use change that has been observed, Bruce Babcock 

and Zabid Iqbal’s publication “Using Recent Land Use Changes to Validate Land Use Change Models” 

confirmed that the primary response from farmers across the world during the period 2004–2012 was to 

use available land resources more efficiently rather than to expand the amount of land in production. 

Farmers in Brazil, India, and China have increased double cropping, reduced unharvested planted area, 

reduced fallow land, and reduced temporary pasture which explains why the land-use changes 

projected in the RIA for Brazil and elsewhere have not materialized (Babcock and Iqbal, 2014). 

To develop an updated picture of regional land-use changes that have occurred since 2010 as a result of 

increases in corn ethanol production in the United States, ICF incorporated qualitative data from 

Babcock and Iqbal (2014) along with recent GTAP simulation results from Dunn et al. 2014. The acres 

adjustments relied on one source in order to be consistent across regions. 

ICF identified five regions for adjustments based on observed land practices and FAO data analysis. 

 Brazil: Babcock and Iqbal (2014) show that 76 percent of Brazil’s change in acres was due to double 

cropped land. This analysis assumes that the 76 percent change can be applied the acreage within 

the GTAP output that was attributed to U.S. corn demand. 

 India: Babcock and Iqbal (2014) note that 100 percent of India’s change in acres should be 

attributed to double cropping leading ICF to adjust GTAP 2013 change in acres to zero. 

 China: Between 2010 and 2012, Babcock and Iqbal (2014) state that 29 percent of China’s change in 

harvested acres should be attributed to double cropping. ICF adjusted the GTAP 2013 output to 

attribute 71 percent of the country’s change in acres to U.S. corn demand. 

 Sub-Saharan Africa: According to Babcock and Iqbal (2014), much of region’s crop production was 

conducted by small-scale producers without modern farming equipment leading to the idea that 

double cropping is not widely adopted. The authors note that given domestic food demand from 

growing populations in the region, the extensive land-use increase equaled 20.7 million hectares or 

1.35 percent (Babcock and Iqbal 2014). ICF adjusted the GTAP Sub-Saharan Africa region to 

allocate 1.35 percent of the GTAP 2013 change in acres to corn ethanol. 

 Indonesia: Babcock and Iqbal (2014) cite multiple studies that state that the land-use change in 

Indonesia attributed to corn production is most likely inflated due to the prevalence of double 

cropping and the significant expansion of palm oil production. They commented that a significant 

portion of the corn production increase is due to double cropping (Babcock and Iqbal 2014). ICF 

attributed 50 percent of the GTAP 2013 acres to those due to corn ethanol demands. 
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Based on the adjustments stated above and the GTAP 2013 modelling scenario, ICF created a second 

data set for international changes in acres. Table 3-41 below shows the changes in acres for the five 

regions. 

Table 3-41: Comparison of GTAP 2013 Change in Acres and GTAP 2013 Adjusted with Data from Babcock 
and Iqbal (2014) 

Country Land Type GTAP 2013 
GTAP 2013 Adjusted with 
Babcock and Iqbal (2014) 

Data 

Brazil 

Forest 62,448 14,988 

Grassland −219,140 −52,594 

Cropland-Pasture −213,930 −51,343 

India 

Forest −7,004 0 

Grassland −3,539 0 

Cropland-Pasture 0 0 

China 

Forest −1,692 −1,193 

Grassland −86,841 −61,240 

Cropland-Pasture 0 0 

Sub-Saharan Africa 

Forest −167,148 −2,256 

Grassland −294,788 −3,980 

Cropland-Pasture 0 0 

Indonesia 

Forest 892 446 

Grassland −2,974 −1,487 

Cropland-Pasture 0 0 
Source: Dunn et al. 2014; Babcock and Iqbal 2014 

 

The updated acreage changes are compared to those presented for corn ethanol in the RIA in Table 

3-42. 

Table 3-42: Comparison of International Crop Area Change between RIA and Proposed Data 

 
International Crop Area Change 

(000s ha) 

RIA Corn Ethanol 789 

GTAP 2013 214 

GTAP 2013 Adjusted with Babcock and Iqbal (2014) 
Data 

51.4 

Source: EPA, 2010a; Dunn et al., 2014; Babcock and Iqbal, 2014 

 

3.6.3.2. Updated Emission Factors 

ICF considered two sets of emission factors, one from Winrock International and the other from the 

California ARB’s Low Carbon Fuel Standard Agro-ecological zones (AEZ) model. The Winrock emission 

factors were used in the RIA. They were developed based on historical land-use trends using MODIS 

satellite imagery from 2001 and 2004 and include emission factors for each land conversion and 

reversion type for each of the 19 regions in GTAP (ICF International 2009). 
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The use of the ARB AEZ emission factors is consistent with the 19 regions and 18 zones reported by 

GTAP (CARB 2015) and maintains the 342 region-zone land conversion combinations while the use of 

the Winrock emission factors requires aggregation of AEZs within each region. Both data sets are 

displayed in ICF’s literature review. ICF generated emissions factors by conversion and reversion type for 

each of the 19 GTAP regions by weighting each country’s individual factors by the percent contribution 

to total arable land in each region. 

For ICF’s literature review, the AEZ factors were averaged by GTAP region for the purpose of 

comparison. A comparison of these emission factors can be seen in Table 2-10, Table 2-11, and Table 

2-12. Overall, there is not one methodology that consistently overestimates or underestimates emission 

factors when compared to the other alternatives. Deviations are specific to each country/region. As 

mentioned in the literature review, Winrock does have consistently lower emission factors associated 

with the Grassland to Annuals conversion while AEZ has lower emission factors for Cropland-Pasture to 

Annuals conversion. 

3.6.4. ICF Results 

Based on the updated data for changes in acres as well as emission factors, ICF generated a range of 

estimates for the international land-use change caused by increased U.S. corn demand based on the 

available acre change and emission factor data sets. An average value for the international land-use 

change emission category was calculated taking these estimates and recently published (i.e., 2015 and 

2016) values from the literature. 

The estimates assumed an increase of 11.59 billion gallons of ethanol and the emissions are amortized 

over the 30 year period (EPA 2010). The 11.59 billion gallons of reflects the total additional amount of 

corn ethanol required by the RFS2 compared to the production volume in place prior to the RFS1 in 

2004. The emissions below would be released annually due to this increased demand. These estimates 

are presented below in Table 3-43. 

Table 3-43: International Land-Use Change Results by Acre Change Data Set and Emission Factor Data Set 

Acre Change Data Set Emission Factor Data Set Emissions (g CO2e/MMBtu) 

EPA’s RIA Analysis (2022) 

FAPRI-CARD Winrock 31,790 

ICF’s Analysis 

GTAP 2013 ARB LCFS AEZ Model 17,802 

GTAP 2013 Winrock 5,913 

GTAP 2013 Adjusted with Babcock 
and Iqbal (2014) Data 

ARB LCFS AEZ Model 8,464 

GTAP 2013 Adjusted with Babcock 
and Iqbal (2014) Data 

Winrock 1,326 

Source: ICF analysis; EPA 2010 
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All emission calculations presented above are lower that EPA’s RIA estimate of the impacts from 

international land-use change. 

In regards to acreage data, the GTAP 2013 modelling scenario is more conservative than the GTAP 2013 

adjusted with Babcock and Iqbal (2014) data. Although the quantitative analysis conducted by Babcock 

and Iqbal (2014) attempts to better represent the actual acreage change for the five regions due to corn 

ethanol production, the evidence is not strong enough to solely recommend the qualitative adjustments 

that were made. The GTAP 2013 adjusted with Babcock and Iqbal (2014) data with Winrock emission 

factors scenario provides the lower bound for this estimate and illustrates that increased corn ethanol 

demand could have only a small impact on international land-use change. 

The ARB LCFS AEZ does have higher emissions impact estimates than the Winrock data. This analysis is in 

line with what was observed during the literature review, where it was determined (see Section 2.2) 

that ARB LCFS AEZ would provide the highest emission estimates. These values provide the upper bound 

for this analysis. 

To reflect the full range of recently published literature relating to the contribution of international land-

use change to the current GHG profile of corn ethanol, ICF adopted a composite approach that averaged 

the results of three recently published studies (CARB, 2015; Dunn et al., 2015; and GTAP, 2013) and four 

scenarios developed from their results that allow for alternative sets of emissions factors and the 

increased use of double cropping (Babcock and Iqbal, 2014). These seven results are shown in Figure 3-4. 

Dunn et al. (2015) quantify two emissions related to international land-use change distinguished by the 

use of the Winrock and the Woods Hole emissions factors (EFs). ICF developed four scenarios from the 

results of the most recently published GTAP study (GTAP 2013) to account for the use of ARB EFs and 

Winrock EFs as well as increased double cropping (denoted “Adjusted” in Figure 3-4). Across these seven 

results, the average emissions impact is 8.61 g CO2e/MJ. This value converts to 9,082 g CO2e/MMBtu, 

which is the value ICF used as the contribution of international land-use change to corn ethanol’s 

current GHG profile (see Table 3-44). 
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Figure 3-4: Literature and ICF Values for International Land-Use Change Due to U.S. Corn Ethanol Demand 

 

Table 3-44: International Land-Use Change Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 9,082 

 

3.6.5. Limitations, Uncertainty, and Knowledge Gaps 

This analysis does not account for any additional yield changes over time in excess of those embedded in 

GTAP simulations. Increases in yield could have a large impact on the overall results. This GTAP analysis 

assumes that each country has a specific yield of bushels of corn per hectare. These direct assumptions 

are not publically available, however Keeney and Hertel (2009) does evaluate the percent change in 

yield following ethanol mandates for the United States and Rest of World (Keeney and Hertel, 2009). 

These results are not in enough granularity to support a robust analysis. When projecting the land-use 

emissions, a change in yield could be considered given the historical increases in yield that have been 

seen domestically. 
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3.7. International Farm Inputs and Fertilizer N2O 

The international farm inputs included in the RFS2 analysis include fertilizers, herbicides, pesticides, 

energy use, and direct and indirect fertilizer N2O emissions. 

3.7.1. EPA RIA Methodology and Data Sources 

The activity data for international farm inputs are based on the following methods and sources: 

 Fertilizer Application Rates: The changes in crop area and production by crop type and country 

output from the FAPRI-CARD model was used to determine the applied amount of fertilizer. 

Regional fertilizer application rates (kg/ha) were taken from the International Fertilizer Industry 

https://greet.es.anl.gov/publications
http://landval.gsfc.nasa.gov/Results.php?TitleID=mod12_valsup1
http://web.ics.purdue.edu/~hertel/data/uploads/publications/keeney-hertel-ajae.pdf
http://cdiac.ornl.gov/
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Association (IFA) report, “Assessment of Fertilizer Use by Crop at the Global Level, 2006/07–

2007/08.” The report covers 23 countries and 11 crops groups. The RFS2 RIA averaged the results 

from two reporting periods (2006/2007 and 2007/2008) (Heffer, 2009) to account for seasonal 

applications. The application rates were then divided by the total consumption by the FAOStat 

agricultural area data from the FAOStat database (FAO, 2009). The IFA report did not include lime 

use for corn and therefore this international input was omitted from the corn ethanol analysis. 

 Herbicide and Pesticide Application Rates: Herbicide and pesticide activity data was provided by 

FAO’s FAOStat data set for pesticide consumption. The data did not include China. Herbicide and 

pesticide activity data was provided by the U.S. Department of Agriculture’s (USDA) Economic 

Research Service (ERS) (FAO, 2009; USDA, 2009). 

 N2O Emission Impacts: The international N2O emissions from synthetic fertilizer application were 

also considered. The amount of direct and indirect N2O emissions were calculated in the same 

manner as the domestic emissions. 

 Agricultural Energy Use: The International Energy Agency’s (IEA) data on total CO2 emissions from 

agricultural electricity and fuel use by country was gathered for on-farm diesel, gasoline, and 

electricity use. The emissions associated with combustion were then calculated using IEA country-

level GHG emission factors. The combustion emissions were then proportionally scaled to represent 

the entire fuel life cycle based on the ratio of combustion to life-cycle GHG emissions from U.S. 

electricity and fuel use provided by IEA (IEA, 2015). The life-cycle emissions were then divided by the 

area of agricultural land in each country, from the FAOSTAT land area database (FAO, 2009). The 

emissions per land area were then multiplied by the country-level crop acreage changes from FAPRI-

CARD to determine the fuel-related emission for corn ethanol. 

3.7.2. EPA RIA Results 

Activity data for the international farm inputs analysis are shown in Table 3-45. The emission factors 

used for each source are provided in Table 3-3 and were based on GREET (EPA, 2009). 

Table 3-45: Changes in International Agricultural Inputs 

Input Units 2012 2017 2022 

Total N Tons 10,788 3,452 3,627 

Total P2O5 Tons 15,165 11,815 9,495 

Total K2O Tons 13,082 10,684 8,640 

Herbicide Tons 80 70 57 

Pesticide Tons 90 71 58 

Source: FAPRI-CARD output, FAOStat, and ERS; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” 
“Inputs_Ag” tab. 
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Table 3-46: Relative Change in International Fertillizer N2O Emissions 

Emission 
Category 

Units 
2012 2017 2022 

Fuel-
Specific 

Control 
Case 

Difference 
Fuel-

Specific 
Control 

Case 
Difference 

Fuel-
Specific 

Control 
Case 

Difference 

International 
Fertilizer Use 

000 
Tons 
CO2e 

73,282 73,565 −612.7 N/P N/P −935.1 N/P N/P −933 

Source: FASOM output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Inputs_Ag” tab. 
N/P = Not Provided. 

 

The international change in agricultural energy use for corn ethanol in 2022 is 1.7 kg CO2e/MMBtu (see 

Table 2.4-18 from EPA RIA). 

The RIA estimates are: 672 g CO2e/MMBtu for agricultural inputs, 3,380 g CO2e/MMBtu for direct and 

indirect N2O emission, and 1,700 g CO2e/MMBtu for energy emissions, which result in a reported total 

of: 5,720 g CO2e/MMBtu (5,752 g CO2e/MMBtu actual total). 

Table 3-47: International Farm Inputs and Fertilizer N2O Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 5,720 

 

3.7.3. ICF Methodology and Data Sources 

ICF calculated the emissions impacts of changes in international agricultural input use related to higher 

levels of corn ethanol production under the RFS2 based on changes in international cropland acres 

attributable to increased U.S. production of corn ethanol. To assess this acreage change, ICF used the 

output of the GTAP model from 2013 (Dunn et al., 2014), which reflects an increase of 11.59 billion 

gallons of corn ethanol.31 ICF used the GTAP 2013 changes in acres for the international inputs acres 

instead of the GTAP 2013 adjusted acres based on Babcock and Iqbal (2014) data. The GTAP 2013 acres 

are a more accurate representation as they are based on the most recent data available. For more 

information on the change in acres due to an increased demand in U.S corn ethanol, see the 

International Land-Use Change section. 

ICF based fertilizer, fungicide, insecticide, and herbicide application rates on the rates developed for the 

RIA. These application rates are based on data collected by the Food and Agriculture Organization (FAO) 

of the United Nations and the International Energy Agency (IEA) and compiled in FAO’s FertiStat 

                                                           
 

31
 The 11.59 billion gallons of reflects the total additional amount of corn ethanol required by the RFS2 compared to the 

production volume in place prior to the RFS1 in 2004. 
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Database (EPA 2010b). ICF updated the herbicide and pesticide use data using the most current data 

available from FAO’s FAOStat dataset for pesticide consumption (see Venezia et al. 2009). ICF combined 

the application rates into a weighted average by GTAP region. The weighting was based on the 

countries’ percent contribution of arable land by region. The arable land area was take from FAO. 

Life-cycle emission factors for nitrogen, phosphate, potassium, calcium carbonate, and insecticide were 

based on Argonne National Laboratory’s GREET 2015 model (Argonne National Laboratory 2015). 

Emission factors for herbicides and insecticides are from ecoinvent v2 found in SimaPro. These emission 

factors are cradle to gate and include the emissions from the upstream production of agricultural 

chemicals (Weidema et al. 2013). 

The direct and indirect N2O emission calculations are based on IPCC (2006) guidance. The guidance uses 

the nitrogen fertilizer application to assess the direct impacts including the N additions from fertilizer, 

and the N mineralized from mineral soil as a result of loss of soil carbon. The nitrogen fertilizer 

application rate is also used to calculate the indirect emissions from volatization and leaching (IPCC, 

2006). 

Emissions associated with agricultural energy were calculated using the same methodology as the RIA. 

The RIA used IEA data on total CO2 emissions from agricultural fuel combustion by country. These 

emissions were combined with agricultural electricity use by country. The total emissions were then 

scaled to represent the full life-cycle GHG emissions for each country. Finally, these emissions were 

divided by the FAOstat land area to derive a per acre GHG emissions factor for each country (EPA 2010). 

The emission factors developed for the RIA were not updated because IEA no longer publically releases 

country-specific emission factors. While the emission factors used in this analysis are the same as those 

in the RIA, they are multiplied by the change in acres data from GTAP 2013. 

Table 3-48 shows the emissions contributions from each of the international agricultural inputs. 

Table 3-48: International Agricultural Input Emissions by Chemical and Application (g CO2e/MMBtu) 

Nitrogen 
Emissions 

Direct and 
Indirect 

N2O 
Emissions 

Phosphate 
Emissions 

Potassium 
Emissions 

Fungicide 
Emissions 

Insecticide 
Emissions 

Herbicide 
Emissions 

Energy 
Emissions 

Total 
Emissions 

289 1.71 87.3 82.4 1,574 0.64 1.34 181 2,217 

 

3.7.4. ICF Results 

These values are significantly lower than the RIA’s estimates. The main driver of this difference is that 

GTAP 2013 modelling predicts a 73 percent reduction in hectares changed due to corn ethanol 

demands. 
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Table 3-49: International Farm Inputs and Fertilizer N2O Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 2,217 

 

3.7.5. Limitations, Uncertainty, and Knowledge Gaps 

One limitation of note is since EPA’s development of the RIA, IEA no longer publically publishes their 

annual CO2 Emissions From Fuel Combustion Highlights report. Because of this, ICF was unable to use 

more recent emission factors for agricultural energy emissions. 
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3.8. International Rice Methane 

Assumptions and boundaries similar to domestic rice methane were made to calculate the emissions 

associated with international rice methane. 

3.8.1. EPA RIA Methodology and Data Sources 

Based on the IPCC methodology used in the EPA RIA, the area of rice harvested, a GHG emission factor, 

and the planting to harvest season length are required. The FAPRI-CARD model was used to predict the 

impact of increased biofuels demand in the United States on international rice production and the area 

of rice harvested. The IPCC default emission factors for irrigated, rainfed lowland, upland, and 

deepwater by country were used (IPCC, 2006). The rice cultivation season length was based on data 

from the International Rice Research Institute (IRRI) (IRRI, 2008). 

3.8.2. EPA RIA Results 

The area of rice harvested internationally was calculated on an annual basis. The FAPRI-CARD results for 

2022–2023 are shown in Table 3-50. 

Table 3-50: International Rice Production 

 
Thousand Acres Harvested in 2022–2023 

Harvested Area 155,970 

Source: FAPRI-CARD output; “EPA-HQ-OAR-2005-0161-3167 (1).xlsx,” “Rice2009” tab. 

 

Table 3-51 shows the emissions as a result of land-use change from increased demand from biofuels and 

converting land from rice acres to corn acres. 

Table 3-51: Relative Change in International Methane from Rice Production 

Emission 
Category 

Units 
2012 2017 2022 

Fuel-
Specific 

Control 
Case 

Difference 
Fuel-

Specific 
Control 

Case 
Difference 

Fuel-
Specific 

Control 
Case 

Difference 

Methane 
from Rice 
Cultivation 

000 Tons 
CO2e 

18,410 17,800 −359.8 N/P N/P −227.5 N/P N/P −352 

Source: FAPRI-CARD output; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Input_Ag” tab. 
N/P = Not Provided. 

 

http://www.ers.usda.gov/Data/China/NationalResults.aspx?DataType=6&DataItem=160&StrDatatype=Agricultural+inputs&ReportType=0
http://www.ers.usda.gov/Data/China/NationalResults.aspx?DataType=6&DataItem=160&StrDatatype=Agricultural+inputs&ReportType=0
http://www.ecoinvent.org/
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The RIA reported emissions due to U.S. corn ethanol production from changes in international rice 

methane as 3,000 g CO2e/MMBtu in 2022 (see Table 3-52). 

Table 3-52: International Rice Methane Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 3,000 

 

3.8.3. ICF Methodology 

The literature review found data available after 2010 that indicated both the trend in international rice 

acres and the associated CH4 emissions are different from the projections in the RIA (see Table 2-39 and 

Table 2-43). ICF used these acre and CH4 emission data to determine new contributions of international 

rice methane to corn ethanol’s life-cycle GHG emissions. However, similar to the domestic rice methane 

assessment, this analysis was again limited by a lack of data to construct scenarios distinguishing 

international rice acres for the corn only, control, and reference cases. Region specific methane 

emission factors were also unavailable. 

The methodology for assessing international rice methane emissions is similar to that used to assess 

emissions related to domestic rice methane emissions. That is, harvested acreage projections for the 

reference, control, and corn only cases are used to determine the country-specific changes in rice acres 

associated with the increase in U.S. corn ethanol production. The corn-only EPA 2017 FAPRI acreage 

projections isolate the RFS2 effects of corn ethanol. Country-specific annual rice methane emission 

factors were taken from the EPA’s Foreign Agricultural Impact Calculations for Biofuel Lifecycle Analysis 

(EPA 2010). Table 3-53 shows the international acreage change (i.e., difference between control and 

reference cases acreage), emission factors, and total GHG emissions. Methane was converted to GHG 

emissions using the AR4 GWP coefficient. 

Table 3-53: 2017 International Rice Acreage, Emission Factors, and Associated GHG Emissions with Corn 
Ethanol Expansion 

Country 

1,000 Acres 

kg CH4/acre/yr 
2017 

Mg CO2e 
2017 Corn Only 

Control Case 

2017 
Reference 

Case 
Difference 

Bangladesh 28,354 28,347 6 56.77 8,660 

Brazil 7,431 7,443 -12 37.04 -10,567 

China 67,847 67,930 -83 72.49 -144,248 

Egypt 1,669 1,669 0 76.60 0 

EU 996 996 0.1 91.82 258 

India 112,354 112,254 101 119.55 288,864 

Indonesia 29,048 29,042 6 137.02 18,107 
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Country 

1,000 Acres 

kg CH4/acre/yr 
2017 

Mg CO2e 
2017 Corn Only 

Control Case 

2017 
Reference 

Case 
Difference 

Iran 1,672 1,671 1 47.35 687 

Iraq 391 390 1 63.13 1,756 

Ivory Coast 1,790 1,787 2 11.41 599 

Japan 3,373 3,372 1 107.13 2,380 

Myanmar 17,814 17,814 0 98.60 0 

Nigeria 5,792 5,791 1 32.67 396 

Pakistan 6,662 6,659 4 107.13 10,109 

Philippines 11,136 11,131 5 119.44 15,541 

ROW 31,366 31,356 10 82.53 20,030 

South Korea 2,161 2,160 1 76.60 1,561 

Thailand 26,159 26,128 30 93.80 68,506 

Turkey 235 235 0.1 55.24 106 

Uruguay 511 511 1 90.61 1,151 

Vietnam 17,657 17,655 3 124.61 7,575 

TOTAL 377,415 377,338 78 N/A 291,471 

 

3.8.4. ICF Results 

The final life-cycle emissions for changes in international rice acres were determined using the same 

method that was used to determine the emissions associated with changes in domestic rice methane 

production. The total GHG emissions associated with the acreage difference between the control and 

reference cases (see Table 3-54) was divided by the annual RFS2 incremental corn ethanol production 

(3.03 billion gallons in 2014). Using the (lower) heating value of 76,330 (Btu/gallon), the emissions are 

1,480 g CO2e/MMBtu. 

Table 3-54: International Rice Methane Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 1,480 

 

3.8.5. Limitations, Uncertainty, and Knowledge Gaps 

The international rice methane analysis had similar constraints to the domestic rice assessment: while 

updated datasets existed from the previous RFS2 RIA assessment, these data were limited for both 

acreage and emission factors. As noted in the literature review, regional updates to emission factors 

have only just recently been developed for a small set of rice-producing countries. Future research 

should utilize these new emission factors as more become available. Acreage projection data available 
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for this assessment was limited to only a few data points, and future efforts should develop country-

specific control and reference acreage data that consistently reflects historical trends. 

3.8.6. References: International Rice Methane 

EPA, 2010c. Foreign Agricultural Impact Calculations for Biofuel Lifecycle Analysis. U.S. Environmental 

Protection Agency. EPA‐HQ‐OAR‐2005‐0161. 

https://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2005-0161-3173 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National 
Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and. 
Japan: IGES. 

IRRI. (2008, October 15). International Rice Research Institute. Retrieved from www.irri.org 

3.9. Fuel and Feedstock Transport 

The RIA includes the GHG impacts of transporting biofuel feedstock from the field to the biofuel facility 

and the impacts of transporting the finished fuel (e.g., corn ethanol) and co-products (e.g., distillers 

grains with solubles). 

3.9.1. EPA Methodology and Data Sources 

Argonne National Laboratory’s GREET model was used as the basis for the corn transportation between 

the farm and bioethanol facility. The model assumes a default truck transportation of 10 miles from 

farm to stacks and 40 miles from stacks to plant. For the distillers grains with solubles (DGS), the 

percentage shipped by mode assumptions are shown in Table 3-55 and were based on data provided by 

USDA as well as Association of American Railroads, Army Corps of Engineers, Commodity Freight 

Statistics, and industry estimates. The distances for DGS were based on GREET default distances for 

other commodities shipped by those transportation modes. 

Table 3-55: Transportation Distance and Mode Assumptions for DGS 

Percentage of DGS Mode of Transportation Distance (miles) 

14% Rail 800 

2% Barge 520 

86% Truck 50 

Source: GREET model and USDA; “EPA_2010_RFS2_regulatory_impact_assessment.pdf”. 

 

To model the transportation of corn ethanol from the production or import facility to the petroleum 

blending terminal, an Oak Ridge National Laboratory study was used for distances and mode. These 

parameters are shown in Table 3-56 (Oak Ridge National Laboratory, 2009). 

https://www.regulations.gov/#!documentDetail;D=EPA-HQ-OAR-2005-0161-3173
http://www.irri.org/
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Table 3-56: Transportation Distance and Mode Assumptions for Corn Ethanol 

Percentage of Corn Ethanol Mode of Transportation Distance (miles) 

77% Rail 629 

12% Barge 336 

17% Truck 68 

83% Local Truck
a
 6.5 

Source: GREET; model and Oak Ridge National Laboratory; “EPA_2010_RFS2_regulatory_impact_assessment.pdf” 
a
 This mode of transportation is an additional transportation leg experienced by 83 percent of corn ethanol. 

 

For each mode of transportation the GREET default assumptions and emission factors were used. These 

emission factors are shown in Table 3-57. 

3.9.2. EPA RIA Results 

The emission factors shown in Table 3-57 represent the distances outlined in Table 3-55 and Table 3-56 

for both the corn product per bushel and the DGS per ton. 

Table 3-57: Emission Factors Used for Fuel and Feedstock Transport 
(Units: Emissions—grams/bushel or ton; Energy—Btu per bushel or ton) 

Fuel/ 
Feedstock 

CO NOx PM10 PM2.5 SOx CH4 N2O CO2 CO2e 
Coal 

Energy 

Natural 
Gas 

Energy 

Petroleum 
Energy 

Corn per 
Bushel 

0.150 0.464 0.049 0.024 0.115 0.000 0.529 0.013 469 485 163.232 313.600 

DGS per Ton 4.044 12.028 1.555 0.709 3.873 0.000 17.856 0.409 15,866.8 16,369.2 5,204.6 10,021.1 

Source: GREET; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Emission Factors” tab. 

 

The RIA reported emissions due to U.S. corn ethanol production from fuel and feedstock transport as 

4,265 g CO2e/MMBtu in 2022 (see Table 3-58). 

Table 3-58: Fuel and Feedstock Transport Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 4,265 
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3.9.3. ICF Methodology 

Fuel and feedstock transportation represents a minimal portion of total corn ethanol life-cycle GHG 

emissions, contributing less than 5 percent (EPA, 2010a). However, transportation systems are dynamic 

and since 2010 have continually evolved to become more fuel and GHG efficient. Key developments 

that may have affected the GHG LCA profile of corn ethanol include: 

 Improved transportation technologies, such as improved fuel economies for medium and heavy 

duty (MDHD) diesel trucks (Cai et al., 2015). 

 Infrastructure retrofits, such as utilizing existing liquid fuel pipelines for ethanol transport (Strogen 

et al., 2013). 

 Decreasing GHG intensity of the average fuel mix used in transportation (Cai et al., 2015). 

Given these potential sources of GHG reductions, our assessment applied the latest data and emission 

factors using a similar methodology to the EPA’s report. 

Figure 3-5 illustrates the stages involved in fuel and feedstock transportation based on the most recent 

GREET model. 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 139 January 12, 2017 

 

Figure 3-5: GREET Process Maps for Fuel and Feedstock Transportation (HHDDT denotes heavy heavy-duty 
diesel trucks and MHDDT denotes medium heavy-duty diesel trucks.) 

EPA used a combination of sources to determine fuel and feedstock transportation emissions. The 

GREET 2009 model was utilized by EPA to calculate final GHG emissions (Argonne, 2009) for the modes 

and distances. For feedstock transportation, the study used the standard GREET inputs of mode and 

distance for farm to stacks (truck, 40 miles), and stack to plant (truck, 30 miles). EPA used an Oak Ridge 

National Laboratory (ORNL) study to estimate the projected (2022) fuel transportation modes and 

distances from the ethanol plant to the bulk terminal (Oak Ridge National Laboratory, 2009). These 

modes and distances were applied to GREET to determine GHG emissions. For co-products, the EPA 

study used USDA mode and distance estimates for DGS transportation, and did not include any 

transportation requirements for corn oil. 

Our methodology used the more recent 2015 GREET model, which includes the recent expansion in 

freight vehicle LCA emission factors (Cai et al., 2015) as detailed in Section 2.8 of the literature review. 

Our analysis also uses the current GREET standard inputs for fuel and feedstock modes, distances, and 
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emissions factors. The analysis models corn oil transportation by extracting GREET’s per mass GHG 

emission factor for transportation of the co-product. DGS transport is modeled using the EPA’s mode 

and distance assumptions with emission factors from Nealer et al. (2012). Table 3-59 show the 

assumptions in mode and distance for transportation used in our analysis. Both the EPA and our study 

assumed no ethanol is currently being transported through pipelines. 

Table 3-59: Mode and Distance Assumptions 

Mode 

Farm to Stacks Stacks to Plant Plant to Terminal 
Terminal to 

Refueling Station 
DGS 

% of 
Total 

Shipped 

Distance 
(mi) 

% of 
Total 

Shipped 

Distance 
(mi) 

% of 
Total 

Shipped 

Distance 
(mi) 

% of 
Total 

Shipped 

Distance 
(mi) 

% of 
Total 

Shipped 

Distance 
(mi) 

Barge 0% 0 0% 0 13% 520 0% 0 0.02 520 

Rail 0% 0 0% 0 79% 800 0% 0 0.12 800 

Truck 100% 10 100% 40 8% 80 100% 30 0.86 50 

 

3.9.4. ICF Results 

Figure 3-6 shows the results for fuel and feedstock transportation, separated by transportation phase 

and co-product. The RIA total is also included for comparison. The final DGS transportation result is a 

weighted average of dry and wet DGS based on the expected yields shown in Table 3-64 for the industry 

average modeled in fuel production. 

 

Figure 3-6: Fuel and Feedstock Transportation Emissions 
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Table 3-60: Fuel and Feedstock Transport Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 3,432 

 

3.9.5. Limitations, Uncertainty, and Knowledge Gaps 

Figure 3-6 shows similar results between the EPA RIA and our analysis. This similarity is due to the use of 

similar emission factors in GREET, as there has not been substantial implementation of the potential 

transportation decarbonization efforts that are outlined at the beginning of this section. A more 

complete assessment could collect supply-chain data from farms and corn ethanol plants to gain a 

better representation of the exact modes and transportation distances being used. This dataset could be 

compared to the assumptions used by EPA, GREET, and our analysis to fully determine if these estimates 

are accurate. However, major efforts to improve the accuracy of fuel and feedstock transportation 

emissions will likely only have a small effect on the total corn ethanol life-cycle emissions result, since as 

stated previously, fuel and feedstock transportation contributes relatively little to the total cor ethanol 

life-cycle GHG emissions. 

3.9.6. References: Fuel and Feedstock Transport 

Cai, H., Burnham, A., Wang, M., Hang, W., Vyas, A, 2015. The GREET Model Expansion for Well-to-
Wheels Analysis of Heavy-Duty Vehicles. https://greet.es.anl.gov/publication-heavy-duty 

Strogen, B., Horvath, A., Zilberman, D, 2013. Energy intensity, life-cycle greenhouse gas emissions, and 
economic assessment of liquid biofuel pipelines. Bioresource Technology, 150, 476-485. 

Oak Ridge National Laboratory , 2009. Analysis of Fuel Ethanol Transportation Activity and Potential 
Distribution Constraints. http://dx.doi.org/10.3141/2168-16 

Nealer, R., Matthews, H. S., Hendrickson, C. 2012. Assessing the energy and greenhouse gas emissions 
mitigation effectiveness of potential US modal freight policies. Transportation Research Part A: 
Policy and Practice, 46(3), 588-601. 

3.10. Fuel Production 

There are two methods for producing ethanol from corn: dry milling and wet milling. The dry milling 

process included grinding the entire corn kernel and fermenting it to produce ethanol. The rest of the 

corn components are left wet or dried for animal feed—i.e., dried distillers grains with solubles (DDGS). 

Wet milling includes separating the starch from the kernel by soaking the corn kernel, and then using 

the starch to make the ethanol. This process is more expensive than dry milling. Dry mill plants 

comprises the majority of ethanol plants in the United States. 

https://greet.es.anl.gov/publication-heavy-duty
http://dx.doi.org/10.3141/2168-16
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3.10.1. EPA RIA Methodology and Data Sources 

A study from the University of Illinois was the basis for calculating the emissions associated with fuel 

production. The amount of corn used for ethanol production was modeled by FASOM and FAPRI-CARD 

(Mueller, 2007). It was assumed that pure ethanol yields were 2.71 gallons per bushel at dry mill plants 

and 2.5 gallons per bushel for wet mill plants. Plants were modeled based on the type of plant and type 

of fuel used. Because drying DGS is energy intensive, the plants were also categorized by their co-

products (wet versus dry). The energy use for dry mill plants was based on the ASPEN models from 

USDA. Future plant energy consumption was projected based on what would be built to meet increased 

ethanol production. 

The fuel upstream emission factors were based on the GREET model (EPA, 2009). 

3.10.2. EPA RIA Results 

The amount of fuel by plant type and technology is shown in Table 3-61. 

Table 3-61: 2022 Energy Use at Ethanol Plants with CHP (Source: Table 2.4-55 from EPA RIA) 
(Units: Btu/gallon) 

Plant Type Technology 
Natural Gas 

Use 
Coal 
Use 

Biomass Use 
Purchased 
Electricity 

Corn Ethanol—Dry 
Mill-Natural Gas 

Base Plant (dry DDGS) 28,660 N/A N/A 2,251 

w/ CHP (dry DDGS) 30,898 N/A N/A 512 

w/ CHP and Fractionation (dry DDGS) 25,854 N/A N/A 1,512 

w/ CHP, Fractionation, and 
Membrane Separation (dry DDGS) 

21,354 N/A N/A 1,682 

w/ CHP, Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (dry DDGS) 

16,568 N/A N/A 1,682 

Base Plant (wet DGS) 17,081 N/A N/A 2,251 

w/ CHP (wet DGS) 19,320 N/A N/A 512 

w/ CHP and Fractionation (wet DGS) 17,285 N/A N/A 1,512 

w/ CHP, Fractionation and 
Membrane Separation (wet DGS) 

12,785 N/A N/A 1,682 

w/ CHP, Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (wet DGS) 

9,932 N/A N/A 1,682 

Corn Ethanol—Dry 
Mill-Coal 

Base Plant (dry DGS) N/A 35,824 N/A 2,694 

w/ CHP (dry DGS) N/A 39,407 N/A 205 

w/ CHP and Fractionation (dry DGS) N/A 33,102 N/A 986 

w/ CHP, Fractionation, and 
Membrane Separation (dry DGS) 

N/A 27,477 N/A 1,191 

w/ CHP, Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (dry DGS) 

N/A 21,495 N/A 1,191 
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Plant Type Technology 
Natural Gas 

Use 
Coal 
Use 

Biomass Use 
Purchased 
Electricity 

Base Plant (wet DGS) N/A 21,351 N/A 2,694 

w/ CHP (wet DGS) N/A 24,934 N/A 205 

w/ CHP and Fractionation (wet DGS) N/A 22,390 N/A 986 

w/ CHP, Fractionation, and 
Membrane Separation (wet DGS) 

N/A 16,766 N/A 1,191 

w/ CHP, Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (wet DGS) 

N/A 13,200 N/A 1,191 

Corn Ethanol—Dry 
Mill-Biomass 

2022 Base Plant (dry DGS) N/A N/A 35,824 2,694 

2022 Base Plant w/ CHP (dry DGS) N/A N/A 39,407 205 

2022 Base Plant w/ CHP and 
Fractionation (dry DGS) 

N/A N/A 33,102 986 

2022 Base Plant w/ CHP, 
Fractionation and Membrane 
Separation (dry DGS) 

N/A N/A 27,477 1,191 

2022 Base Plant w/ CHP, 
Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (dry DGS) 

N/A N/A 21,495 1,191 

2022 Base Plant (wet DGS) N/A N/A 21,351 2,694 

2022 Base Plant w/ CHP (wet DGS) N/A N/A 24,934 205 

2022 Base Plant w/ CHP and 
Fractionation (wet DGS) 

N/A N/A 22,390 986 

2022 Base Plant w/ CHP, 
Fractionation and Membrane 
Separation (wet DGS) 

N/A N/A 16,766 1,191 

2022 Base Plant w/ CHP, 
Fractionation, Membrane 
Separation, and Raw Starch 
Hydrolysis (wet DGS) 

N/A N/A 13,200 1,191 

Corn Ethanol—Wet 
Mill 

Plant with Natural Gas 45,950 N/A N/A N/A 

Plant with Coal N/A 45,950 N/A N/A 

Plant with Biomass N/A N/A 45,950 N/A 

Source: University of Illinois; “EPA_2010_RFS2_regulatory_impact_assessment.pdf”. 
N/A = Not Applicable. 

 

The upstream emission factors used for natural gas, coal, biomass, diesel, and electricity were taken 

from GREET, and are shown in Table 3-62. 
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Table 3-62: Upstream Emission Factors for Fuels and Electricity 

 

Liquefied 
Petroleum 

Gas 
 

(commercial 
boiler) 

Coal Used in 
Biofuel Plants 

 
(industrial 

boiler) 

Biofuel Used 
in Biofuel 

Plants 
 

(small 
industrial 

boiler) 

Diesel Fuel 
 

(average of 
commercial 

boiler, 
stationary 

engine, and 
turbine) 

Natural Gas: 
Biofuel Plant 

Use 
 

(50/50 mix of 
large and 

small 
industrial 

boiler) 

U.S. Average 
Electricity 

Production 

VOC 1.89 2.068 5.341 16.725 1.987 19.682 

CO 10.8 76.185 76.8 84.937 22.621 58.457 

NOx 84.619 120 110 225.535 38.5 239.631 

PM10 2.43 85 12.661 32.996 3.083 289.622 

PM2.5 2.43 45 6.331 29.04 3.083 76.28 

SOx 0 130 4.1 0.543 0.269 527.218 

CH4 1.08 4 3.834 1.848 1.1 296 

N2O 4.86 1 11 1.463 1.1 3.117 

CO2 67,380.833 107,318.59 N/A 77,973.126 58,818 219,707 

CO2e 68,910 107,712 3,490 78,465 59,182 226,889 

Coal Energy N/A 1,000,000 N/A N/A N/A 1,630,541 

Natural Gas 
Energy 

600,000 N/A N/A N/A 1,000,000 553,053 

Petroleum 
Energy 

400,000 N/A N/A 1,000,000 N/A 115,046 

Source: GREET; “Renewable Fuel Lifecycle Greenhouse Gas Calculations (1).xlsx,” “Emission Factors” tab. 
N/A = Not Applicable. 

 

The RIA reported emissions due to U.S. corn ethanol production from fuel production as 

30,000 g CO2e/MMBtu in 2022 (see Table 3-63). 

The RIA emissions from fuel production results apply to a projected composite average corn ethanol 

refinery in 2022 (i.e., 63 percent dry mill, 37 percent wet mill). The RIA emissions for this refinery are 

30,000 g CO2e/MMBtu (100 percent natural gas), 50,000 g CO2e/MMBtu (100 percent coal), and 

15,000 g CO2e/MMBtu (100 percent biomass). The RIA analysis included only single thermal energy 

sources, and the natural gas result is shown in Table 3-63. 
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Table 3-63: Fuel Production Emissions 

 
 

Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 30,000 

 

3.10.3. ICF Methodology 

Corn-ethanol production has experienced considerable growth since 2010. From 2009–2014, U.S. fuel 

ethanol production increased by 40 percent, reaching over 14 billion gallons annually (EIA 2013, EIA 

2015). There are currently 14 newly proposed and under-construction production plants, which will add 

over 850 million gallons per year to U.S. capacity (Ethanol Producer Magazine 2016). 

With this growth have come improved process efficiencies and new co-products. These process 

upgrades have become drivers for a decreasing GHG-intensity of corn ethanol production. Production 

yields, measured in gallons of ethanol per bushel of corn, increased by 5 percent between 2006 and 

2014. New enzymes and yeast strains have increased process efficiencies in starch conversion and 

fermentation (EIA 2015). Along with distillers grains and solubles (DGS), corn oil is now recovered as a 

co-product, and 80 percent of dry grind mills are now capable of corn oil recovery (Argonne 2014). New 

state and federal programs, such as EPA’s Efficient Producer Program and California’s Low Carbon Fuel 

Standard, create incentives for innovative efforts that continue to lower corn ethanol production GHG 

emissions. 

The RIA used process-level data for energy use at corn ethanol production facilities. The data accounted 

for both dry and wet mill processes, where EPA modeled variations of primary energy (i.e., coal, natural 

gas, biomass) and electricity demands. The wet mill model did not include any electricity use. For the dry 

mill model, five process variations were modeled for both dry and wet DGS outputs (i.e., 10 total): 

 Base plant 

 Combined heat and power (CHP) 

 CHP with corn oil fractionation 

 CHP with fractionation and membrane separation 

 CHP with fractionation, membrane separation, and raw starch hydrolysis 

The study restricted wet milling variations to only three primary energy use variations (100 percent 

natural gas, 100 percent coal, 100 percent biomass). The final average plant results were based on a 

combination of dry milling with fractionation (63 percent) and wet milling (37 percent), where both 

processes used natural gas as the primary energy source. 

Our analysis uses more recent corn ethanol production data and emission factors available to estimate 

the current GHG intensity of production processes. The modeling utilizes the more recent GREET corn 

ethanol pathway updates (Argonne 2014), which use process-level data from Mueller and Kwik (2012). 
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We maximize the available variations in GREET to mimic the scenarios modeled by EPA as closely as 

possible. These variations included (with primary energy source details): 

 Industry average—92 percent natural gas, 8 percent coal 

 Dry mill—100 percent natural gas 

 Dry mill—100 percent coal 

 Dry mill—100 percent biomass (forest residue) 

 Wet mill—72.5 percent natural gas, 27.5 percent coal 

Table 3-64 shows the assumptions and inputs for each of these scenarios. The industry average and wet 

milling processes are the only production pathways that include corn oil recovery. It should be noted 

that dry milling includes electricity consumption with the primary energy demands. 

Table 3-64: Assumptions and Inputs for Fuel Production Modeling in GREET 

Input Category 
Dry Milling Plant w/o 

Corn Oil Extraction 
Dry Milling Plant w/ 
Corn Oil Extraction 

Wet Milling Plant 

Total energy use for ethanol 
production 
(Btu/gallon) 

26,856.00 26,421.11 47,409.00 

Energy use: natural gas, coal, 
and biomass 
(Btu/gallon) 

24,323.41 23,862.00 47,409.00 

Electricity demand 
(kWh/gallon) 

0.74 0.75 0.00 

Co-Product Yield: Dry DGS to 
animal feed 
(Actual lb/gallon ethanol) 

4.21 4.02 0.00 

Co-Product Yield: Wet DGS to 
animal feed 
(Actual lb/gallon ethanol) 

5.52 5.28 0.00 

Co-Product Yield: CGM to 
animal feed 
(Actual lb/gallon ethanol) 

0.00 0.00 1.35 

Co-Product Yield: CGF to 
animal feed 
(Actual lb/gal ethanol) 

0.00 0.00 5.86 

Co-Product Yield: Corn Oil 
(Actual lb/gallon ethanol) 

0.00 0.19 0.98 

Ethanol Yield (gallon/bushel) 2.80 2.82 2.61 

 

ICF customized the allocation of co-products based on the methods available in GREET—using the 

displacement method for DGS and the marginal method for corn oil. The displacement method allocates 

all energy for DGS drying to the ethanol production process, and the benefits are assumed to displace 

animal feed (see the Domestic Farm Inputs and Fertilizer N2O section). The marginal method does not 

allocate the energy required for corn oil extraction to the ethanol process, but there are no benefits 
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(i.e., displacement of other commodities reducing the ethanol carbon intensity, such as production of 

biodiesel) of corn oil production included in the assessment from any potential downstream use. 

3.10.4. ICF Results 

Table 3-65 shows the results of the modeling for each of the scenarios described. 

Table 3-65: Corn Ethanol Fuel Production Results (g CO2e/MMBtu) 

Model Scenario 
Dry Mill w/o Corn Oil 

Extraction 
Dry Mill w/ Corn Oil 

Extraction 
Wet Mill Corn Ethanol 

Industry Average 32,114 31,590 53,055 

Dry Mill—100% Natural Gas 30,683 N/A N/A 

Dry Mill—100% Coal 51,450 N/A N/A 

Dry Mill—100% Biomass 10,570 N/A N/A 

Wet Mill N/A N/A 53,055 

 

The RIA emissions from fuel production results apply to a projected composite average corn ethanol 

refinery in 2022 (i.e., 63 percent dry mill, 37 percent wet mill). Our analysis also reflects a composite 

industry average refinery (18 percent dry milling without corn oil extraction, 71 percent dry milling with 

corn oil extraction, and 11 percent wet milling). Our resulting weighted industry average is 

34,518  g CO2e/MMBtu. The higher level of emissions obtained in this analysis is mainly due to the use 

of current plant configurations that utilize a variety of thermal energy sources. The RIA analysis included 

only single thermal energy sources, and the natural gas result is shown in Table 3-63. Also, as the 

electricity grid mix continues to become cleaner with increased renewable resources, the production 

emissions will continue to decrease. 

Table 3-66: Fuel Production Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2014 Current Conditions 34,518 

 

Figure 3-7 shows our complete results for the industry average modeling. 
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Figure 3-7: Industry Average Fuel Production Emissions for Varied Milling Processes 

3.10.5. Limitations, Uncertainty, and Knowledge Gaps 

Our assessment relies heavily on the detailed modeling efforts of others, which are based on more 

recent available data and emission factors. A more detailed assessment would compile process-level 

data from existing corn ethanol production facilities to create a representative dataset of current 

operations. This bottom up approach in LCA could allow for modeling of more variations (e.g., CHP), 

particularly in efficiency improvements not captured in existing models such as GREET. The GREET 

model utilized in this study also does not allow for corn oil extraction applications to scenarios outside 

the industry average. This limited our ability to model the effects of different primary energy sources on 

that specific process. Wet milling modeling also does not allow for variations in primary energy sources 

through GREET. Future work could include developing a comprehensive database of energy demands, 

process emissions, ethanol yields, and co-product recovery for a wide range of corn ethanol plants to 

generate a stronger assessment of the GHG intensity of current production practices. 

3.10.6. References: Fuel Production 
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3.11. Tailpipe 

Tailpipe emissions for ethanol were based on the carbon content of the fuel. 

3.11.1. EPA RIA Methodology and Data Sources 

The carbon dioxide emissions from corn ethanol are assumed to not increase the atmospheric CO2 

emissions as the biogenic carbon emitted is offset by the carbon uptake of new growth biomass. Life-

cycle CO2 emissions from biofuel tailpipe combustion are not included in the analysis. The biofuel 

tailpipe combustion CH4 and N2O emissions are included however. These emission factors are based on 

EPA’s MOVES model results (EPA, 2015b; EPA, 2010g). 32 

3.11.2. EPA RIA Results 

The tailpipe emission factor is shown in Table 3-67. 

Table 3-67: Emission Factors for Tailpipe Combustion (Source: Table 2.4-71 from EPA RIA) 

Fuel Type 
CH4 

(g CO2e/MMBtu) 
N2O 

(g CO2e/MMBtu) 

Ethanol 269 611 

Source: MOVES model output; “epa_2010_RFS2_regulatory_impact_assessment.pdf” Table 2.4-71. 

 

The RIA reported tailpipe emissions due to U.S. corn ethanol production as 880 g CO2e/MMBtu in 2022 

(see Table 3-68). 

                                                           
 

32
 EPA’s Motor Vehicle Emission Simulator (MOVES) model is a emission modeling system which estimates emissions for mobile 

sources covering a broad range of pollutants and allows multiple scale analysis. 

http://www.eia.gov/todayinenergy/detail.cfm?id=11551
http://www.eia.gov/todayinenergy/detail.cfm?id=21212
http://www.ethanolproducer.com/plants/listplants/US/
http://www.chpcentermw.org/pdfs/2007CornEethanolEnergySys.pdf
http://ethanolrfa.3cdn.net/fe5f4b7a4bdbc12101_2gm6bejk4.pdf
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Table 3-68: Tailpipe Emissions 

 
 

Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 880 

 

3.11.3. ICF Methodology 

The RIA found tailpipe emissions to have an insignificant impact on total GHG emissions (less than 

1 percent in all scenarios). All CO2 emitted from corn ethanol combustion is considered biogenic and not 

accounted for in the carbon emissions. 

EPA used the 2009 MOVES model to estimate the GHG emissions from vehicle ethanol combustion. 

Since CO2 emission from combustion are assumed to be biogenic, the assessment included only CH4 and 

N2O emissions in the final value. Our assessment used the most recent and relevant values for E85 and 

ethanol tailpipe CH4 and N2O emissions from the available literature. We selected E85 as the most 

relevant fuel available in the version of GREET used for comparison purposes with the EPA RIA study. 

3.11.4. ICF Results 

Table 3-69 shows the literature results, as well as EPA emission factors. For the emission factors from 

the Washington Department of Ecology (2016), CH4 and N2O were not separated from total GHG 

emissions in the available results. To determine the non-CO2 emissions, we subtracted the GREET 2015 

CO2 E85 tailpipe emissions from these values. The EPA RIA and Washington Department of Ecology 

(2016) results reflect pure ethanol combustion, and the GREET and CA-GREET are results for E85 blends. 

Table 3-69: Ethanol Tailpipe Emissions 

Source g CH4/MMBtu g N2O/MMBtu g CO2e/MMBtu 

GREET 2015 
(used by ICF: 2014 Current 
Conditions) 

2.01 1.77 578 

CA-GREET 2.0 2.45 1.85 613 

Washington Department 
of Ecology (2016) 

- - 187 

EPA RIA: 2022 8.97 2.31 880 

 

There are large variations in the results, with the most recent results showing a declining trend in 

estimated emissions. Again, these results represent a minimal portion of the total overall life-cycle GHG 

emissions of corn ethanol. ICF uses the GREET 2015 emission values for our analysis. 



A Life-Cycle Analysis of the Greenhouse Gas Emissions of Corn-Based Ethanol 

ICF 151 January 12, 2017 

3.11.5. Limitations, Uncertainty, and Knowledge Gaps 

The EPA RIA used the 2009 MOVES model to estimate the GHG emissions from vehicle ethanol 

combustion. Our analysis did not use the more recent (2015) EPA MOVES model for determining ethanol 

emissions. MOVES is the official model for state implementation plans (SIPs) and transportation 

conformity, as well as being the standard for determining tailpipe GHG emissions. MOVES bases 

emissions on instantaneous energy consumption and a continually-updated database to generate 

emission factors customized for regional, temporal, and other scenarios. Because of this highly-region-

specific nature of MOVES, this study instead used recent literature that focused on average emission 

factors. Future assessments could utilize the latest version of MOVES to better estimate ethanol tailpipe 

emissions. However, this added effort will likely have a minimal effect on the overall accuracy of the 

corn ethanol LCA, as tailpipe emissions are comparatively less significant. 

3.11.6. References: Tailpipe 

California ARB, 2015. CA-GREET 2.0 Model. http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm 

EPA. (2010g). NMIM and MOVES Runs for RFS2 Air Quality Modeling: Memorandum. 

EPA. (2015b, October 13). Motor Vehicle Emission Simulator). Retrieved from 
http://www.epa.gov/otaq/models/moves/index.htm 

Washington Department of Ecology, 2016. Greenhouse Gas Reporting: Transportation Fuel Suppliers. 
http://www.ecy.wa.gov/programs/air/permit_register/ghg/GHG_transp.html 

3.12. Result of Combining the Current GHG Emission Category Values 

This section presents a current GHG LCA for corn ethanol production. The data used to develop this LCA 

span the 2010–2014 timeframe and, consequently, the ICF: 2014 Current Conditions analysis is 

appropriately viewed as the current GHG profile of corn ethanol. The EPA RIA LCA was a projection, 

done in 2010, of GHG emissions from a new natural gas powered ethanol refinery in 2022. The RIA and 

ICF LCAs are directly comparable because the large majority of existing refineries use natural gas (i.e., 

the industry has already shifted away from coal-fired plants) and industry ethanol production, that is 

13.5–14.5 billion gallons a year, is very close to the 15 billion gallon cap in the RFS2. 

Figure 3-8 shows the results of combining the 11 emission categories from the EPA RIA: 2022 and ICF: 

2014 Current Conditions analyses. 

The EPA RIA: 2022 LCA value for corn ethanol is 79,180 g CO2e/MMBtu compared to 

98,000 g CO2e/MMBtu for the 2005 gasoline baseline which is used as the fossil fuel carbon intensity 

reference in the RFS2. 

Our ICF: 2014 Current Conditions value is 55,731 g CO2e/MMBtu. 

http://www.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm
http://www.epa.gov/otaq/models/moves/index.htm
http://www.ecy.wa.gov/programs/air/permit_register/ghg/GHG_transp.html
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The ICF analysis shows a 30 percent emissions reduction compared to the RIA total carbon intensity and 

a 43 percent emissions reduction compared to the 2005 gasoline baseline. 

 

Figure 3-8: Comparison of EPA-RIA and ICF Carbon Intensities 
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4. Projected GHG LCA Emissions Values for a Business-As-
Usual Scenario and a Building-Blocks Scenario for Corn 
Ethanol in 2022 
Based on the current GHG emissions profile of corn ethanol developed in Chapter 3, this chapter 

develops two projected profiles for corn ethanol in 2022. The first projection, labeled the Business-as-

Usual (BAU) scenario, considers a continuation through 2022 of observable trends in corn yields (per 

acre), process fuel switching toward natural gas, and fuel efficiency in trucking. The second projection, 

labeled the USDA Building-Blocks scenario, adds a number of changes refineries could make in their 

value chain to further reduce the GHG intensity of corn ethanol. These management changes include 

contracting with farmers to grow corn using specific GHG mitigation technologies and practices (reduced 

tillage, cover crops, and nitrogen management), switch to biomass as a process fuel, and locating 

confined livestock operations in close proximity to refineries. 

The remainder of the chapter is organized as follows: 

 Key Parameters and BAU and Building-Blocks Scenarios 

  

 Domestic Farm Inputs and Fertilizer N2O 

 Domestic Land-Use Change 

 Fuel Production 

 Fuel and Feedstock Transportation 

 Summary of the ICF: 2022 BAU and ICF: 2022 Building-Blocks Scenarios Results 

4.1. Key Parameters and BAU and Building-Blocks Scenarios 

Table 4-1 summarizes the key variables ethanol producers can adjust under each scenario. 

Table 4-1: Key Parameters and Scenarios Considered 

Source Category Key Parameter ICF: 2022 BAU Scenario 
ICF: 2022 Build-Blocks 

Scenario 

Domestic Farm Inputs and 
Fertilizer N2O 

 Yield increases 

 Conservation 
technologies and 
practices: 
 Reduced tillage 
 Nutrient 

management 
 Cover crops 

Yield increases 

Yield increases 
+ 

Conservation technologies 
and practices 
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Source Category Key Parameter ICF: 2022 BAU Scenario 
ICF: 2022 Build-Blocks 

Scenario 

Domestic Land-Use 
Change 

 Tillage practices: 
 Conventional 

tillage 
 Reduced tillage 

Conventional tillage Reduced tillage 

Fuel Production 

 Increased corn to 
corn ethanol yield 
(based on the 
literature) 

 Process fuel switching 
(natural gas and/or 
biomass) 

Process fuel switching to 
natural gas 

Process fuel switching to 
biomass 

+ 
Increased corn to corn 

ethanol yield 

Fuel and Feedstock 
Transport 

 Increased truck 
efficiency 

 Fuel switching 
(natural gas, 
biodiesel, renewable 
diesel, renewable 
natural gas) 

 Co-location of CAFOs 
(reduced 
transportation 
distances for DGS) 

Increased truck efficiency 
w/ fuel switching to 

natural gas 

Increased truck efficiency 
w/ fuel switching to 

natural gas or another 
lower carbon intensity 

fuel 
+ 

Co-location of CAFOs 

 

4.2. Domestic Farm Inputs and Fertilizer N2O 

The Domestic Farm Inputs and Fertilizer N2O emissions category affects both projection scenarios. The 

BAU scenario includes a continuation of current increases in corn yields through 2022, and the Building-

Blocks scenario incorporates farm adoption of reduced tillage, nitrogen management, and cover crop 

practices in corn production (on top of the increase in yields). 

Within the framework of the USDA Building Blocks for Climate Smart Agriculture and Forestry,33 

improved nitrogen fertilizer management and use of cover crops align with the Nitrogen Management 

Building Block. In the Building-Blocks projection, the GHG benefits from adopting these practice are 

consistent with USDA’s COMET-Planner Report. 

4.2.1. Methodology: ICF: 2022 BAU Scenario 

The BAU scenario for the Domestic Farm Inputs and Fertilizer N2O emission category assumes that corn yields 

(bushels per acre) will increase between 2016 and 2022 as shown in Table 4-2. This assumption is calculated 

                                                           
 

33
 http://www.usda.gov/wps/portal/usda/usdahome?contentidonly=true&contentid=climate-smart.html 
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based on USDA’s long-term projections of U.S. corn production (million bushels) and corn acres harvested 

(USDA ERS, 2015). 

Table 4-2: USDA Corn Crop Long-Term Projections 

Year 

USDA National Agricultural Statistics Service Data ICF Analysis 

Corn Use In 

Fuel Ethanol 

U.S. Corn 

Production 

Corn Planted 

Acreage 

Corn 

Harvested 

Acreage 

Corn 

Allocation to 

Ethanol 

Average 

Crop 

Yield 

Harvested/ 

Planted 

Acreage 

Million 

bushels 

Million 

bushels 
Million acres Million acres % 

bushels/ 

acre 
% 

2016 5,150.00 13,940.00 90.00 82.40 37% 169.2 92% 

2017 5,100.00 14,105.00 90.00 82.40 36% 171.2 92% 

2018 5,075.00 14,270.00 90.00 82.40 36% 173.2 92% 

2019 5,075.00 14,355.00 89.50 81.90 35% 175.3 92% 

2020 5,075.00 14,520.00 89.50 81.90 35% 177.3 92% 

2021 5,100.00 14,595.00 89.00 81.40 35% 179.3 91% 

2022 5,125.00 14,760.00 89.00 81.40 35% 181.3 91% 

Source: USDA ERS, 2015. 
 

USDA estimates that total U.S. harvested area will remain below RFS2 RIA assumed values until 2017 

and will exceed the RIA 2022 corn harvested area by over 0.5 million acres. Based on these acreage 

projections, crop yields will increase from 169.2 bushels/acre in 2016 to 181.3 bushels/acre in 2022 

(USDA ERS, 2016). 

4.2.2. Methodology: ICF: 2022 Building-Blocks Scenario 

The Building-Blocks scenario reflects the farm-level adoption of three conservation practice standards 

(CPSs) in the production of corn used to produce ethanol that USDA’s Natural Resources Conservation 

Service (NRSC) have recognized as having GHG benefits. The specific CPSs are: 

 CPS 345—Residue and Tillage Management, Reduced Till; 

 CPS 590—Nutrient Management: Improved Nitrogen Fertilizer Management; and 

 CPS 340—Cover Crops. 

For each CPS, ICF adjusted the associated emission calculations used in the BAU scenario to reflect the 

GHG benefits of these practices. 

4.2.2.1. CPS 345—Residue and Tillage Management, Reduced Tillage 

The RIA and ICF current conditions LCAs both assume that corn is grown using conventional tillage 

practices. Reduced tillage decreases soil disturbance during field operations and leaves a large 

proportion of plant residues on the field. Based on USDA’s COMET-Planner report, this practice affects 
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the soil carbon storage (see Domestic Land-Use Change section below) and nitrous oxide emissions from 

changes in the soil environment. It does not affect any changes in fertilizer application rates. 

To account for the adoption of reduced tillage in this analysis, ICF adjusted the fuel used for on-farm 

equipment and reduced the indirect N2O emissions associated with conventional tillage. Diesel fuel use 

is assumed to be 7.74 gallons per corn-acre under conventional tillage, based on 2015 farm budget 

worksheets published by the University of Tennessee (2015). To model reduced tillage, ICF reduced the 

fuel used for chisel and disk machinery in the conventional tillage case by 50 percent. Fuel use and 

related CO2 emissions for all other equipment used in no-till systems remained the same as in 

conventional tillage systems (University of Tennessee, 2015). This resulted in a fuel consumption of 

6.95 gallons per corn-acre. With respect to indirect N2O emissions, the shift from conventional to 

reduced tillage reduces the volatization rate of nitrogen fertilizer (Swan et al., n.d.) The COMET-Planner 

report attributes a 0.07 Mg CO2e/acre/year reduction in emissions due to reduced tillage relative to 

conventional tillage. This represents a 74.4 percent reduction in volatization N2O emissions (here 

measured in kg N2O/acre per kilogram of nitrogen applied). 

4.2.2.2. CPS 590—Nutrient Management: Improved Nitrogen Fertilizer Management 

CPS 590 assumes the adoption of new nitrogen fertilizer management techniques including reduced 

application rates from targeted nitrogen fertilizer application management and the use of nitrification 

inhibitors. The COMET-Planner report estimates that CPS 590 practices can reduce nitrogen application 

rates by 15 percent. This percent adjustment was made to the application rates in the Building-Blocks 

scenario. 

Nitrification inhibitors are applied to reduce the leaching or production of N2O in the soil. The most 

common nitrification inhibitor used in the United States on corn acres is nitrapyrin. A report by the 

International Fertilizer Industry Association states that application rates of nitrapyrin range between 

1.4–5.6 liters per hectare (Trenkel 2010). The assumed density is 1.582 grams/cm3 (LookChem 2008). 

Based on these data, ICF assumed an application rate of 2.24 kg/acre. There are very few sources of 

publically available life-cycle assessment data with which to quantify the upstream emissions for 

nitrification inhibitors. For the upstream production emissions, ICF used “Organophosphorus-

compound” from the ecoinvent database (Weidema et al. 2013) as a proxy for nitrapyrin. The emissions 

per kilogram of product are in line with those found in Dow’s “Using LCA to Identify Options for 

Greenhouse Gas Emission Reductions in Australian Wheat Farming" (Helling et al. 2014). 

4.2.2.3. CPS 340—Cover Crops 

Cover crops are planted in addition to seasonal crops to increase the nitrogen and water-use 

efficiencies. The additional crop residues increase soil carbon levels (Swan et al., n.d.) and can reduce 

the indirect emissions of nitrogen (e.g., N2O). The reductions of indirect N2O emissions are due to 

decreases in the leaching rate of nitrogen fertilizer (Swan et al., n.d.). The COMET-Planner report 

attributes a 0.05 Mg CO2e/acre/year reduction in emissions due to cover crops. This represents a 

76.8 percent reduction in leaching N2O emissions (here measured in kg N2O/acre per kilogram of 
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nitrogen applied). ICF identified the moisture levels based on the Climate Categories from COMET-

Planner (Swan et al., n.d.). 

4.2.3. Domestic Farm Inputs and Fertilizer N2O Results 

ICF quantified the emission reductions of a farm producing corn for ethanol in 2022 from implementing 

CPS 340, CPS 345, and CPS 590 in the COMET Planner individually and all three combined. Figure 4-1 

shows the range of emissions from the ICF: 2014 Current Conditions on the far left to the ICF: 2022 

Building-Blocks Scenario on the far right. The current conditions LCA represents current emissions, 

which are estimated at 21,814 g CO2e/MMBtu of ethanol. The 2022 BAU Scenario incorporates 

projected changes in corn yields between 2016 and 2022 from the 2016 USDA Baseline. These are 

estimated at 20,259 g CO2e/MMBtu. The ICF: 2022 Build-Blocks Scenario, estimated at 

16,734 g CO2e/MMBtu, further accounts for the adoption by corn farmers of all three CPSs in 2022. The 

central three bars represent the three CPSs isolated from each other. 

The values presented in Figure 4-1 do not include the ethanol co-product credit from DGS displacing 

corn, soybean meal, and urea. To be consistent with the analysis in Chapter 3, ICF modified the GREET 

model inputs including corn yields, fertilizer application and nitrogen emission rates, and ethanol 

production technology (e.g., dry mill refining with corn oil extraction) to develop the unique co-product 

credit for each scenario. Both the BAU and the Building-Blocks scenarios were modified to incorporate 

corn farming farm inputs and fertilizer N2O. In the Building-Blocks scenario, the ethanol yield from corn 

for Dry Mill ethanol refineries with corn oil extraction was increased from 2.8 gallon/bushel to 

2.95 gallon/bushel. Utilizing the AR4 GWPs for CH4 and N2O, Table 4-3 shows the resulting DGS credit 

per MMBtu and the resulting total emissions impacts for the Domestic Farm Inputs and Fertilizer N2O 

emission category. 

Table 4-3: Domestic Farm Inputs and Fertilizer N2O Emissions Including Ethanol Co-Product Credit 

 
Farming Inputs 

(g CO2e/MMBtu) 
Co-Product Credit 
(g CO2e/MMBtu) 

Emissions Impacts 
(g CO2e/MMBtu) 

EPA RIA: 2022 - - 10,313 

ICF: 2014 Current 
Conditions 

21,814 −12,749 9,065 

ICF: 2022 BAU Scenario 20,259 −12,069 8,190 

ICF: 2022 Building-
Blocks Scenario 

15,883 −11,393 4,490 
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Figure 4-1: Range of Emissions for the Domestic Farm Inputs and Fertilizer N2O Emission Category Based on 
Adoption of USDA Conservation Practice Standards 

 

4.2.3.1. Limitations, Uncertainty, and Knowledge Gaps 

The largest area of uncertainty are the upstream production emissions associated with the nitrification 

inhibitor Nitrapyrin. A compound was used as a proxy for these life-cycle emissions that is in line with 

the published literature. Also, GREET maintains a consistent DGS yield in pounds per gallon of ethanol. 

Therefore, it does not account for potential variations in DGS yield with either increasing or decreasing 

ethanol yield per bushel of corn. If the DGS yield changes, the DGS credit will also change. 

4.2.4. References: Domestic Farm Inputs and Fertilizer N2O 

Eagle, A.J, Olander, L.P., Henry, L.R., Haugen-Kozyra, K., Millar, N., Robertson, G.P. 2012. Greenhouse 
Gas Mitigation Potential of Agricultural Land Management in the United States: A Synthesis of 
the Literature. Technical Working Group on Agricultural Greenhouse Gases. 
https://lter.kbs.msu.edu/open-
access/citations/pdfs/3149/original/Eagle_etal_2012_Nicholas_Institute.pdf 

https://lter.kbs.msu.edu/open-access/citations/pdfs/3149/original/Eagle_etal_2012_Nicholas_Institute.pdf
https://lter.kbs.msu.edu/open-access/citations/pdfs/3149/original/Eagle_etal_2012_Nicholas_Institute.pdf
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Helling, R.K., Cass, I., Merrill, J. 2014. Using LCA to Identify Options for Greenhouse Gas Emission 
Reductions in Australian Wheat Farming. Proceedings of the 9th International Conference on 
Life Cycle Assessment in the Agri-Food Sector. http://lcafood2014.org/papers/280.pdf 

LookChem. 2008. Nitrapyrin. http://www.lookchem.com/Nitrapyrin/ 

Trenkel, M.E. 2010. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing 
Nutrient Use Efficiency in Agriculture. International Fertilizer Industry Association. 

Swan, A., Williams, S.A., Brown, K., Chambers, A., Creque, J., Wick, J., Paustian, K. COMET-PLANNER: 
Carbon and greenhouse gas evaluation for NRCS conservation practice planning. 
http://www.comet-planner.com/ 

University of Tennessee. 2015. Field Crop Budgets For 2015 E12-4115: University of Tennessee Institute 
of Agriculture. http://economics.ag.utk.edu/budgets/2015/Crops/2015CropBudgets.pdf 

USDA. 2016. USDA Agricultural Projections to 2025. USDA Agricultural Projections No. (OCE-2016-1) 99 
pp, February 2016. http://www.ers.usda.gov/publications/oce-usda-agricultural-
projections/oce-2016-1.aspx 

Weidema, B.P., C. Bauer, R. Hischier, C. Mutel, et al. 2013. The ecoinvent database: Overview and 
methodology, Data quality guideline for the ecoinvent database version 3. www.ecoinvent.org 

4.3. Domestic Land-Use Change 

The BAU and Building-Blocks scenarios incorporate projections to 2022 for the following key variable 

that affects GHG emissions under the Domestic Land-Use Change source category: 

 Continuation of conventional till practices by farms for producing corn for ethanol; versus 

 Adoption of reduced till practices by farms producing corn for ethanol. 

4.3.1. Methodology 

The methodology and results for determining total acreage change and emission factors can be found in 

the Chapter 3 (see Section 3.1.7). This assessment used the same emission factors and anticipated 

acreage changes as the ICF current conditions LCA. Acreage changes are based on the 2013 corn ethanol 

production scenario in the GREET model’s Carbon Calculator for Land Use Change from Biofuels 

Production (CCLUB) (Dunn et al., 2015). Using the 2013 production scenario assumes that total U.S. corn 

ethanol production will remain constant at 15 billion gallons annually through 2022 (11.59 billion 

gallons/year greater than 2004 production levels). The difference between the BAU scenario and Build-

Blocks scenario is the continued adoption of conventional till in the BAU scenario and the adoption of 

reduced till in the Building-Blocks scenario. 

4.3.2. Domestic Land-Use Change Results 

Table 4-4 shows the total GHG emission results for conventional (ICF: 2022 BAU Scenario) and reduced 

till (ICF: 2022 Build-Blocks Scenario) for 100 cm soil depths. 

http://lcafood2014.org/papers/280.pdf
http://www.lookchem.com/Nitrapyrin/
http://www.comet-planner.com/
http://economics.ag.utk.edu/budgets/2015/Crops/2015CropBudgets.pdf
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
http://www.ers.usda.gov/publications/oce-usda-agricultural-projections/oce-2016-1.aspx
http://www.ecoinvent.org/
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Table 4-4: ICF Analysis Results for Reduced and Conventional Till Practices 

Tillage Practice 
Total Direct 
Emissions 
(Mg CO2e) 

Annualized 
Emissions 

(Mg CO2e/year) 

Direct Emissions 
(g CO2e/gallon) 

Direct Emissions 
(g CO2e/MMBtu) 

Conventional Till— 
ICF: 2022 BAU Scenario 

−1,803,611 −155.6 −1.9 −2,038 

Reduced Till— 
ICF: 2022 Build-Blocks 
Scenario 

−62,656,429 −2,088,548 −180.2 −2,359 

 

4.3.3. Limitations, Uncertainty, and Knowledge Gaps 

A switch from conventional to reduced tillage in corn production can reduce the GHG emissions 

associated with corn ethanol. This analysis is based on the assumption that all corn farming for ethanol 

production will use reduced till. Total domestic land-use change benefits might vary based on the actual 

reduction of conventional tilling. Additionally, acreage conversions through 2022 could also vary, 

perhaps significantly, from the CCLUB. 

4.3.4. References: Domestic Land-Use Change 

Dunn JB, Mueller S, Qin Z, Wang MQ (2014) Carbon Calculator for Land Use Change from Biofuels 
Production (CCLUB 2015). Argonne National Laboratory (ANL). 

4.4. Fuel Production 

For the BAU scenario and Building-Blocks scenario, ICF re-estimated the corn ethanol Fuel Production 

emissions in the ICF current conditions LCA to reflect two type of reductions in carbon intensity for fuels 

used in refinery processes. Relative to the current conditions LCA, the BAU scenario includes the 

substitution of natural gas to replace coal as a process fuel in dry milling ethanol production. The 

Building-Blocks scenario includes biomass as the process fuel combined with an increase ethanol yield 

(in gallons) per bushel of corn. 

4.4.1. Methodology 

This assessment followed the Chapter 3 fuel production methodology with updates for ethanol 

production yield. This analysis focused on modeling variations in dry milling for the industry average in 

GREET with and without corn oil extraction. For the Building-Blocks scenario, production yields were 

increased from 2.80 gallons/bushel (2010, Chapter 3 assumption) to 2.93 gallons/bushel based on 

Energy Information Administration (EIA) data (EIA, 2015) and GREET’s projected dry milling with corn oil 

extraction’s yield of 2.95 gallons/bushel, up from 2.82 gallons/bushel in 2010. 

This analysis focused only on dry milling, as recent industry trends have revealed an increasing shift 

towards dry milling. In 2013, dry mill plants comprised 83 percent of U.S. corn ethanol production 
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facilities and grew in number by 90 percent from 2000–2013. No wet mill plants have been constructed 

in the United States since 2005, largely due to high capital costs for limited production capacity 

compared to dry mill plants (Boland and Unnasch, 2014). 

4.4.2. Fuel Production Results 

Table 4-5 and Table 4-6 show the results of our analysis for the two emission reduction scenarios. Table 

4-6 also details other scenarios based on variations in production yield, fuel mix, and process type (with 

or without corn oil extraction). Figure 4-2 depicts these same results. For both the BAU and the Building-

Blocks scenarios, ICF assumed Dry Mill with corn extraction based on the expectation that by 2022 all 

Dry Mill ethanol plants will have corn oil extraction. For the BAU scenario, the more conservative natural 

gas fuel case was selected and for the Building-Blocks scenario, the more optimistic biomass fuel case 

with increase ethanol yield was selected. 

Table 4-5: ICF Analysis Results for Fuel Production Emission Reduction Scenarios 

Model Scenario 

Production 
Yield 

(gallon/bushel) 

Fuel Mix Share Production Carbon Intensity 

Fuel Mix 
% NG 

Fuel Mix 
% Coal 

Fuel Mix 
% Biomass 

g CO2e/ 
MMBtu 

g CO2e/MJ 

Dry Mill w/o 
Extraction – 
Default 

2.80 92% 8% 0% 32,373.62 30.7 

Dry Mill w/ 
Extraction – 
Default 

2.82 92% 8% 0% 31,843.69 30.2 

Dry Mill w/o 
Extraction – 
Biomass 

2.80 0% 0% 100% 9,693.82 9.2 

Dry Mill w/ 
Extraction – 
Biomass 

2.82 0% 0% 100% 9,594.08 9.1 

Dry Mill w/o 
Extraction - NG 

2.80 100% 0% 0% 31,519.94 29.9 

ICF: 2022 BAU 
Scenario: 
Dry Mill w/ 
Extraction - NG 

2.82 100% 0% 0% 31,006.19 29.4 

Dry Mill w/o 
Extraction – 
Default 

2.93 92% 8% 0% 32,473.28 30.8 

Dry Mill w/ 
Extraction – 
Default 

2.95 92% 8% 0% 31,944.41 30.3 

Dry Mill w/o 
Extraction – 
Biomass 

2.93 0% 0% 100% 9,793.47 9.3 
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Model Scenario 

Production 
Yield 

(gallon/bushel) 

Fuel Mix Share Production Carbon Intensity 

Fuel Mix 
% NG 

Fuel Mix 
% Coal 

Fuel Mix 
% Biomass 

g CO2e/ 
MMBtu 

g CO2e/MJ 

ICF: 2022 Build-
Blocks Scenario: 
Dry Mill w/ 
Extraction - 
Biomass 

2.95 0% 0% 100% 9,694.80 9.2 

Dry Mill w/o 
Extraction - NG 

2.93 100% 0% 0% 31,619.65 30.0 

Dry Mill w/ 
Extraction - NG 

2.95 100% 0% 0% 31,106.97 29.5 

 

Table 4-6: Fuel Production Emissions 

 
Emissions Impacts 
(g CO2e/MMBtu) 

ICF: 2022 BAU Scenario—Dry Mill with corn oil 
extraction and natural gas fuel 

31,006 

ICF: 2022 Building-Blocks Scenario—Dry Mill with corn 
oil extraction, biomass fuel, and increased ethanol yield 

9,695 
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Figure 4-2: Fuel Production Emissions for ICF Emission Reduction Scenarios (Note: The horizontal axis 
reflects share of fuel mix.) 

4.4.3. Limitations, Uncertainty, and Knowledge Gaps 

The projections for fuel production yields are uncertain. Also, the categorization (i.e., waste, farmed) of 

the biomass could influence the carbon intensity of the corn ethanol pathway. For example, waste 

biomass has a lower carbon intensity than purposely farmed biomass. 

4.4.4. References: Fuel Production 

Boland, S. and Unnasch, S. 2014. Carbon Intensity of Marginal Petroleum and Corn Ethanol Fuels. Life 
Cycle Associates Report LCA.6075.83.2014, Prepared for Renewable Fuels Association. 

EIA. 2015. Corn Ethanol Yields Continue to Improve. Accessed June 6, 2016. U.S. Energy Information 
Administration. http://www.eia.gov/todayinenergy/detail.cfm?id=21212 

4.5. Fuel and Feedstock Transportation 

The ICF current conditions LCA used the most recent literature available to update the emissions 

associated with the transportation of corn to refineries and ethanol to distributors. In developing the 

http://www.eia.gov/todayinenergy/detail.cfm?id=21212
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BAU and Building-Blocks scenarios, this analysis considers improved fuel efficiency in trucking, increased 

use of less carbon-intensive transportation fuels, and reduced co-product transportation requirements. 

4.5.1. Methodology 

The ICF current conditions LCA used default GREET 2015 transportation and distribution emission 

factors, mode allocations (i.e., barge, truck, or rail), and distance assumptions to generate final 

transportation related emissions estimates for current corn ethanol. For this analysis the default GREET 

2015 emissions are modified as follows: 

 ICF: 2022 BAU Scenario—incorporates increased trucking fuel economy and substitution of 

liquid natural gas (LNG) for diesel fuel heavy duty trucks; and 

 ICF: 2022 Building-Blocks Scenario—incorporates the BAU scenario modifications with 

eliminating emissions related to transporting dried distillers grains (DDGS) (assumes location of 

a Confined Animal Feeding Operation (CAFO) in close proximity to the ethanol plant). 

The analysis started with the GREET 2015 emission factors for LNG and renewable liquified natural gas 

(RLNG) used in transportation by trucks. The improved trucking fuel economy was assumed to be a 

50 percent increase from the default GREET assumptions, where the baseline was 5.3 and 10.4 miles per 

diesel gallon for heavy heavy-duty diesel trucks (HHDDT) and medium heavy-duty diesel trucks 

(MHDDT), respectively. Table 4-7 shows the effects of these variations on emission factors for fuel and 

feedstock transportation segments. GREET assumes that MHDDTs are used for farm to stacks transport, 

and HHDDTs are used in all other segments. 

Table 4-7: Emission Factor Variations for Fuel and Feedstock Transportation Pathways 

Fuel and Technology 

g CO2e/MMBtu of Fuel Transported 

Farm to Stacks 
Stacks to Ethanol 

Plant 
Ethanol Plant to 

Refueling Station 

Diesel 37.88 39.65 8.21 

LNG w/ Improved Fuel 
Economy 

21.28 25.28 5.02 

RLNG w/ Improved Fuel 
Economy 

3.87 7.07 1.44 

 

Our analysis also included these fuel economy and new fuel variations in our assessment of corn oil 

transportation. Fuel types and fuel economies for rail and barge remained the same as in the ICF current 

conditions LCA. Transportation distances and mode allocations, outside of the removed DDGS 

transportation for the Building-Blocks scenario, were unchanged as well (see Chapter 3, Table 3-59). 
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4.5.2. Fuel and Feedstock Transportation Results 

Table 4-8 and Figure 4-3 show the results of both the BAU and the Building-Blocks scenarios, as well as 

the ICF LCA developed in Chapter 3. 

Table 4-8: Fuel and Feedstock Transportation Emissions for ICF: 2014 Current Conditions, ICF: 2022 BAU, 
and ICF: 2022 Build-Blocks Scenarios 

Scenario 
g CO2e/MMBtu 

Feedstock Fuel DDGS Corn Oil TOTAL 

ICF: 2014 Current 
Conditions 

1,965 1,156 286 20 3,427 

ICF: 2022 BAU Scenario 1,224 1,118 286 13 2,641 

ICF: 2022 Building-Blocks 
Scenario 

322 910 N/A 6 1,237 

 

 

Figure 4-3: Fuel and Feedstock Transportation Emissions by ICF Scenario 

Note that the fuel transportation requirements have a greater effect as trucking emissions are reduced 

due to the high portion of rail and barge transportation used in the distribution of corn ethanol 

downstream of the production plant. 
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4.5.3. Limitations, Uncertainty, and Knowledge Gaps 

This assessment focused on increasing trucking fuel efficiency and trucking technology improvements. 

The emissions results could differ if alternative fuels and efficiency gains for rail and barge transport and 

other fuel transportation modes (e.g., use of pipelines) had been considered. This assessment also used 

RLNG as an example for a non-fossil alternative fuel, but other fuel sources (e.g., biodiesel, renewable 

diesel) would likely create variations in the results. Finally, actual transportation and distribution mode 

allocations and associated distances in 2022 could vary significantly over supply chains than those in 

GREET 2015. While these uncertainties could have significant effects on the emissions associated with 

the Fuel and Feedstock Transportation category, these emissions account for a very small share of the 

total life-cycle emissions of corn ethanol (see ICF LCA). 

4.6. Summary of the ICF: 2022 BAU and ICF: 2022 Building-Block 
Scenarios Results 

The results of the ICF: 2022 BAU and ICF: 2022 Building-Blocks Scenarios are compared against the 2005 

Gasoline LCA, the EPA RIA: 2022 LCA, and ICF: 2014 Current Conditions LCA in Figure 4-4. 

The EPA RIA: 2022 value for corn ethanol is 79,180 g CO2e/MMBtu compared to 98,000 g CO2e/MMBtu 

for gasoline (2005 Gasoline). 

Our ICF: 2014 Current Conditions value of 55,731 g CO2e/MMBtu is a 43 percent GHG reduction 

compared to the 2005 Gasoline baseline and a 30 percent reduction compared to the EPA RIA: 2022 

LCA. 

The ICF: 2022 BAU Scenario value of 50,553 g CO2e/MMBtu is a 48 percent GHG reduction compared to 

the 2005 Gasoline baseline, a 36 percent reduction compared to the EPA RIA: 2022 LCA, and a 9 percent 

reduction compared to the ICF: 2014 Current Conditions LCA. 

The ICF: 2022 Building-Blocks Scenario value of 23,817 g CO2e/MMBtu is a 76 percent GHG reduction 

compared to the 2005 Gasoline baseline, a 70 percent reduction compared to the EPA RIA: 2022 LCA, 

and a 57 percent reduction compared to the ICF: 2014 Current Conditions LCA. 
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Figure 4-4: Full Life-Cycle Corn Ethanol GHG Results for the ICF: 2014 Current Conditions, ICF: 2022 BAU, 
and ICF: 2022 Building-Blocks Scenarios 

The ICF: 2022 BAU and ICF: 2022 Building-Blocks Scenarios can be viewed as projections of the GHG 

emissions associated with corn ethanol production in 2022 given, respectively, a relatively passive and a 

relative aggressive effort to decrease corn ethanol’s GHG footprint. While it is unlikely that all of the 

emission reductions estimated for the ICF: 2022 Building-Blocks Scenario would be achieved by 2022, 

the scenario does provide a lower bound for describing the potential reduced GHG emissions associated 

with ethanol, at least over the timeframe of the RFS2. 
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